MIT线性代数Linear Algebra公开课笔记 第八讲 求解Ax=b:可解性和解的结构(lecture 8 Solving Ax = b :Row Reduced Form R)

本节是Gilbert Strang的MIT线性代数Linear Algebra公开课中【第八讲 求解 A x = b Ax=b Ax=b:可解性和解的结构(lecture 8 Solving A x = b Ax = b Ax=b :Row Reduced Form R R R)】的笔记,参考他在 MIT Linear Algebra课程网站上公开分享的 lecture summary (PDF) & Lecture video transcript (PDF)等文档,整理笔记如下,笔记中的大部分内容是从 MIT Linear Algebra课程网站上的资料中直接粘贴过来的,本人只是将该课程视频中讲述的内容整理为文字形式,前面的章节可在本人的其他博客中找到(此处戳第一讲第二讲第三讲第四讲第五讲第六讲第七讲),后面的章节会按照视频顺序不断更新~

lecture 8 Solving Ax = b : Row Reduced Form R

When does A x = b Ax = b Ax=b have solutions x x x , and how can we describe those solutions?

一. 可解性(Solvability conditions on b)

1. 可解性

——可解性: b b b 满足什么条件,才能让 A x = b Ax=b Ax=b 有解?(solvability:condition on the right-hand side b b b

——有两种描述方法:

  1. b b b 必须属于 A A A 的列空间(when b b b is in the column space of A A A , C ( A ) C(A) C(A) ),即 b b b 必须是 A A A 各列的线性组合(用列空间描述);
  2. 如果 A A A 各行的线性组合得到零行,那么 b b b 中元素的同样组合也必须为零。
2. 判断可解性的方法

判断可解性的方法( A x = b Ax=b Ax=b 有解的条件):

  1. 法一:直接看方程组:如果方程组左侧各行的线性组合得到 0 0 0 ,那么右侧常数的相同组合必然也等于 0 0 0 .
  2. 法二:对增广矩阵(Augmented matrix)进行消元:如果矩阵 A A A 的某一行已被完全消除(即变为全零行),那么右侧向量 b b b 的对应位置元素应该也变为0。

Example 1: 仍以上节课中的 A A A 为例:
A = [ 1 2 2 2 2 4 6 8 3 6 8 10 ] A=\left[\begin{array}{llll} {1} & {2} & {2} & {2} \\ {2} & {4} & {6} & {8} \\ {3} & {6} & {8} & {10} \end{array}\right] A=1232462682810

  • 法一:对应所需求解的方程组 A x = b Ax=b Ax=b b ≠ 0 b\not= 0 b=0 )如下:
    x 1 + 2 x 2 + 2 x 3 + 2 x 4 = b 1 2 x 1 + 4 x 2 + 6 x 3 + 8 x 4 = b 2 3 x 1 + 6 x 2 + 8 x 3 + 10 x 4 = b 3 x_{1} + 2x_{2} + 2x_{3} + 2x_{4} = b_1 \\ 2x_{1} + 4x_{2} + 6x_{3} + 8x_{4} = b_2 \\ 3x_{1} + 6x_{2} + 8x_{3} + 10x_{4} = b_3 x1+2x2+2x3+2x4=b12x1+4x2+6x3+8x4=b23x1+6x2+8x3+10x4=b3
    显然,矩阵 A A A 的行三是行二与行一的和,因此,若要方程组有解,右侧需满足 b 1 + b 2 = b 3 b_1+b_2=b_3 b1+b2=b3

  • 法二:此方程组对应的增广矩阵如下:
    [ A b ] = [ 1 2 2 2 b 1 2 4 6 8 b 2 3 6 8 10 b 3 ] \left[\begin{array}{llll} A & b \end{array}\right]= \left[\begin{array}{llll} {1} & {2} & {2} & {2} & b_1\\ {2} & {4} & {6} & {8} & b_2\\ {3} & {6} & {8} & {10}& b_3 \end{array}\right] [Ab]=1232462682810b1b2b3
    对增广矩阵进行消元:

[ 1 2 2 2 b 1 2 4 6 8 b 2 3 6 8 10 b 3 ] → [ 1 2 2 2 b 1 0 0 2 4 b 2 − 2 b 1 0 0 2 4 b 3 − 3 b 1 ] → [ 1 2 2 2 b 1 0 0 2 4 b 2 − 2 b 1 0 0 0 0 b 3 − 3 b 1 − ( b 2 − 2 b 1 ) ] \left[\begin{array}{llll} {1} & {2} & {2} & {2} & b_1\\ {2} & {4} & {6} & {8} & b_2\\ {3} & {6} & {8} & {10}& b_3 \end{array}\right] \rightarrow \left[\begin{array}{llll} {1} & {2} & {2} & {2} & b_1\\ {0} & {0} & {2} & {4} & b_2-2b_1\\ {0} & {0} & {2} & {4} & b_3-3b_1 \end{array}\right] \rightarrow \left[\begin{array}{llll} {1} & {2} & {2} & {2} & b_1\\ {0} & {0} & {2} & {4} & b_2-2b_1\\ {0} & {0} & {0} & {0} & b_3-3b_1-(b_2-2b_1) \end{array}\right] 1232462682810b1b2b3100200222244b1b22b1b33b1100200220240b1b22b1b33b1(b22b1)  即
[ 1 2 2 2 b 1 0 0 2 4 b 2 − 2 b 1 0 0 0 0 b 3 − b 1 − b 2 ] \left[\begin{array}{llll} {1} & {2} & {2} & {2} & b_1\\ {0} & {0} & {2} & {4} & b_2-2b_1\\ {0} & {0} & {0} & {0} & b_3-b_1-b_2 \end{array}\right] 100200220240b1b22b1b3b1b2

​ 现在方程三为 0 = b 3 − b 1 − b 2 0=b_3-b_1-b_2 0=b3b1b2 ,这就是有解条件。

  • 综上,两种方法的结果一致;在本例中,只要满足 b 1 + b 2 = b 3 b_1+b_2=b_3 b1+b2=b3 ,方程组就有解。可见当 b = [ 1 5 6 ] b=\left[\begin{array}{llll}{1} \\ {5} \\{6} \end{array}\right] b=156 时,方程组有解。

二. 通解(Complete solution)

A x = b Ax=b Ax=b 的所有解(即通解或完全解)步骤:

  1. 判断方程组是否可解(若可解继续下一步);
  2. 求方程组 A x = b Ax=b Ax=b 的一个特解(particular solution): x particular \mathbf{x}_\text{particular} xparticular ,即 x p \mathbf{x}_p xp
  3. 求零空间中的所有向量:矩阵 A A A 的零空间中的所有向量,等效于求 A x = 0 Ax=0 Ax=0 的所有解: x nullspace \mathbf{x}_\text{nullspace} xnullspace ,即 x n \mathbf{x}_n xn
  4. 将特解和零空间中的所有向量相加,构成方程组的通解,即: x complete = x p + x n \mathbf{x}_{\text{complete}}=\mathbf{x}_p+\mathbf{x}_n xcomplete=xp+xn
1. 特解(A particular solution)

求方程组 A x = b Ax=b Ax=b 的一个特解的简单方法:将所有的自由变量设为 0 0 0 (因为自由变量的值可以任取,取 0 0 0 简单),然后求解主变量,结果即为特解。

2. 零空间 (Combined with the nullspace)

上节课讲过如何求解零空间: A A A 的零空间由其special solutions的所有的线性组合构成( A x = 0 Ax=0 Ax=0 的所有解),(令自由变量中有一个是 1 1 1 ,其他自由变量取 0 0 0 ,然后带回求主变量);

3. 通解(Complete solution)

将特解 x p \mathbf{x}_p xp 与零空间中的向量 x n \mathbf{x}_n xn 相加,即得到方程组 A x = b Ax=b Ax=b 的所有解(即通解或完全解):
x complete = x particular + x nullspace = x p + x n \mathbf{x}_{\text{complete}}=\mathbf{x}_\text{particular} + \mathbf{x}_\text{nullspace}=\mathbf{x}_p+\mathbf{x}_n xcomplete=xparticular+xnullspace=xp+xn
其中, x p \mathbf{x}_{p} xp 是特解, x n \mathbf{x}_{n} xn 是整个零空间,特解加上零空间中的向量即为方程组 A x = b Ax=b Ax=b 的所有解,这是因为: A x p = b A \mathbf{x}_{p}=\mathbf{b} Axp=b A x n = 0 A \mathbf{x}_{n}=0 Axn=0 ,可得 A ( x p + x n ) = b A\left(\mathbf{x}_{p}+\mathbf{x}_{n}\right)=\mathbf{b} A(xp+xn)=b ;即对于方程组某解,将其与零空间内任意向量相加仍为方程组的解,因为零空间内的向量得到的右侧向量为 0 0 0 ,故此时右侧 b b b 不会发生变化,这样就得到方程组的所有解了。

Example 2:

仍继续Example 1中的矩阵 A A A b = [ 1 5 6 ] b=\left[\begin{array}{llll}{1} \\ {5} \\{6} \end{array}\right] b=156 ,那么 A x = b Ax=b Ax=b 的所有解是什么?

  1. 看是否满足有解条件(保证方程组有解):

    法一:在Example 1中已经求过其有解条件: b 1 + b 2 = b 3 b_1+b_2=b_3 b1+b2=b3 ,此时 b = [ 1 5 6 ] b=\left[\begin{array}{llll}{1} \\ {5} \\{6} \end{array}\right] b=156 ,可见该 b b b 满足有解条件,方程组有解;

    法二:将 b = [ 1 5 6 ] b=\left[\begin{array}{llll}{1} \\ {5} \\{6} \end{array}\right] b=156 代入,则增广矩阵消元的最终形式如下:
    [ 1 2 2 2 1 0 0 2 4 3 0 0 0 0 0 ] \left[\begin{array}{llll} {1} & {2} & {2} & {2} & 1\\ {0} & {0} & {2} & {4} & 3\\ {0} & {0} & {0} & {0} & 0 \end{array}\right] 100200220240130
    即最后一个方程成立,满足有解条件。

    注:此时只有两个方程,但是未知数有四个,故理论上应该是有一堆解,而不是一个解;

  2. 求一个特解 x particular \mathbf{x}_\text{particular} xparticular :将所有自由变量设为 0 0 0 ,然后解出 A x = b Ax=b Ax=b 中的主变量。

    本例中,令自由变量 x 2 = 0 , x 4 = 0 x_2=0,x_4=0 x2=0x4=0 ,此时方程组只剩下主列,方程组的具体形式如下:
    x 1 + 2 x 3 = 1 2 x 3 = 3 x_{1} + 2x_{3} = 1 \\ 2x_{3} = 3 x1+2x3=12x3=3
    回代求解: x 3 = 3 2 , x 1 = − 2 x_3=\frac{3}{2},x_1=-2 x3=23x1=2 ,即一个特解为 x p = [ − 2 0 3 / 2 0 ] \mathbf{x}_{p}=\left[\begin{array}{r}{-2} \\ {0} \\ {3 / 2} \\ {0}\end{array}\right] xp=203/20 ,然后可以代回最初的原方程组进行检验。

  3. 零空间: A x = 0 Ax=0 Ax=0 的special solutions,即基础解系;自由变量中有一个是 1 1 1 ,其他自由变量取 0 0 0 ,然后带回求主变量;

    上节课已经讲过,本例中的零空间中有两个特解(因为有两个自由变量): [ − 2 1 0 0 ] \left[\begin{array}{r}{-2} \\ {1} \\ {0} \\ {0}\end{array}\right] 2100 [ 2 0 − 2 1 ] \left[\begin{array}{r}{2} \\ {0} \\ {-2} \\ {1}\end{array}\right] 2021 ,则 x n = c 1 [ − 2 1 0 0 ] + c 2 [ 2 0 − 2 1 ] \mathbf{x}_n=c_1 \left[\begin{array}{r}{-2} \\ {1} \\ {0} \\ {0}\end{array}\right]+c_2 \left[\begin{array}{r}{2} \\ {0} \\ {-2} \\ {1}\end{array}\right] xn=c12100+c22021 A A A 的零空间( A x = 0 Ax=0 Ax=0 的所有special solutions的线性组合);

  4. 综上,完全解即通解为: x complete  = x p + x n = [ − 2 0 3 / 2 0 ] + c 1 [ − 2 1 0 0 ] + c 2 [ 2 0 − 2 1 ] \mathbf{x}_{\text {complete }}=\mathbf{x}_p+\mathbf{x}_n=\left[\begin{array}{r}{-2} \\ {0} \\ {3 / 2} \\ {0}\end{array}\right]+c_1 \left[\begin{array}{r}{-2} \\ {1} \\ {0} \\ {0}\end{array}\right]+c_2 \left[\begin{array}{r}{2} \\ {0} \\ {-2} \\ {1}\end{array}\right] xcomplete =xp+xn=203/20+c12100+c22021

    可见,此时 A A A 的零空间是 R 4 \mathcal{R}^4 R4 中的两维子空间,并且 A x = 0 Ax=0 Ax=0 的解构成了一个通过 x p x_p xp 且与之平行的平面。

    注:特解不能乘以倍数,因为它要保证右侧等于 b b b .

4. 几何图形

将所有的解都画出来(plot all solutions x x x in R 4 \mathcal{R}^4 R4 ):四维图像

—— A x = b Ax=b Ax=b 的解是子空间吗?

——不是(因为它不包含零)

x n = c 1 [ − 2 1 0 0 ] + c 2 [ 2 0 − 2 1 ] \mathbf{x}_n=c_1 \left[\begin{array}{r}{-2} \\ {1} \\ {0} \\ {0}\end{array}\right]+c_2 \left[\begin{array}{r}{2} \\ {0} \\ {-2} \\ {1}\end{array}\right] xn=c12100+c22021 是子空间,这是 R 4 \mathcal{R}^4 R4 中的二维子空间(有两个参数),是个二维平面(维数表示可以任意选取的自由独立的数字的个数);该二维平面不穿过原点,而是过点 [ − 2 0 3 / 2 0 ] \left[\begin{array}{r}{-2} \\ {0} \\ {3 / 2} \\ {0}\end{array}\right] 203/20 ,即特解 x p \mathbf{x}_{p} xp ,构成通解 x complete  \mathbf{x}_{\text {complete }} xcomplete 

在这里插入图片描述

三. 秩(Rank)

考虑一个秩为 r r r m × n m×n m×n 的矩阵 A A A r ≤ n , r ≤ m r\leq n,r \leq m rnrm

秩 = 矩阵的主元的个数;

矩阵 A A A m m m 行,主元不可能超过 m m m 个(最多 m m m 个),故 r ≤ m r \leq m rm ;又因为矩阵 A A A n n n 列,每一列的主元不会超过 1 1 1 个,总主元数不超过 n n n 个,故 r ≤ n r\leq n rn

满秩: r r r 取最大时的情况,存在两种情况:分别对应于 m m m 值和 n n n 值,先讨论列满秩:

1. 列满秩(Full column rank): r = n r=n r=n

——列满秩( r = n r=n r=n )时,零空间是什么样的?

—— r = n r=n r=n 意味着每一列都有主元,即主变量有 n n n 个(一共就 n n n 个变量),此时所有列都含有主元,没有自由变量,故零空间的维数为: n − r = 0 n-r=0 nr=0 维,即零空间内只有零向量: N ( A ) = zero vector N(A)= \text{zero vector} N(A)=zero vector;综上,列满秩时不需要求零空间;

——列满秩( r = n r=n r=n )对于方程组的解意味着什么?通解是什么样的?

——此时如果方程组有解,那么只有唯一解 x p x_p xp ,也就是 A x = b Ax=b Ax=b 的全部解为: x = x p x=x_p x=xp ,因为此时没有自由变量可以进行赋值,故只有特解 x p x_p xp 这一个解,没有别的解,称其为唯一解;(只有 b b b 刚好是左侧列向量的线性组合时,才有解;即对于 R m \mathcal{R}^m Rm 中的任意向量 b b b ,只要它不是 A A A 的各列的线性组合,方程组 A x = b Ax=b Ax=b 就无解)。综上,列满秩时,只有 0 0 0 个或者 1 1 1 个解。(此时 r = n < m r=n<m r=n<m )。另外,已知 r ≤ m r \leq m rm ,又 r = n r=n r=n , 故矩阵的列数 ≤ \leq 行数,此时矩阵的行最简形式一般为: R = [ I 0 ] R=\left[\begin{array}{llll} {I} \\ {0} \end{array}\right] R=[I0] .

在实际应用中,这种各列线性无关的情况很常见。

Example 3:
A = [ 1 3 2 1 6 1 5 1 ] A=\left[\begin{array}{llll} {1} & {3} \\ {2} & {1} \\ {6} & {1} \\ {5} & {1} \end{array}\right] A=12653111
矩阵 A A A 的秩为 2 2 2,两个列向量的方向不同,其简化行阶梯形式 R R R 如下:
R = [ 1 0 0 1 0 0 0 0 ] R=\left[\begin{array}{llll} {1} & {0} \\ {0} & {1} \\ {0} & {0} \\ {0} & {0} \end{array}\right] R=10000100
该矩阵只有两个无关的行,即前两行线性无关(不共线),其他行均是这两行的线性组合。

——此时 A x = b Ax=b Ax=b 是否总有解?

——不是总有解。只有 b b b 选择的刚好是左侧列向量的线性组合时,才有解;矩阵 A A A 是列满秩,其两列给出两个主元,其零空间中只有 0 0 0 ,因为列之间的线性组合无法产生零列(零零组合不算);这里有四个方程两个未知数。如果恰好 b = [ 4 3 7 6 ] b=\left[\begin{array}{llll} {4}\\{3} \\{7} \\{6} \end{array}\right] b=4376 ,即 b b b 是左侧两列的和,那么特解为 x p = [ 1 1 ] \mathbf{x}_{p}=\left[\begin{array}{r}{1}\\{1} \end{array}\right] xp=[11] ,这是方程组的唯一解。

2. 行满秩(Full row rank): r = m r=m r=m

行满秩时,消元后,每一行都有主元,共有 m m m 个主元,没有零行,故有 r = m r = m r=m 个主变量;由于一共就 n n n 个变量,故有 n − r = n − m n-r=n-m nr=nm 个自由变量。( r = m < n r=m < n r=m<n

——右侧向量 b b b 取什么时, A x = b Ax=b Ax=b 有解?

——行满秩,消元时不会出现零行,因此对 b b b 没有要求,即对于任意 b b b A x = b Ax=b Ax=b 都有解,故必然有解。综上,行满秩时,方程组 A x = b Ax=b Ax=b 总有解,另外由于有 n − m n-m nm 个自由变量,因此方程组 A x = 0 Ax=0 Ax=0 n − m n-m nm 个special solutions。此时 r = m ≤ n r=m \leq n r=mn ,行数 ≤ \leq 列数,则其行最简形式一般为 R = [ I F ] R=\left[\begin{array}{llll}I & F\end{array}\right] R=[IF]

Example 4: (将Example 2 中的例子转置一下)
A = [ 1 2 6 5 3 1 1 1 ] A=\left[\begin{array}{llll} {1} & {2} & {6} & {5} \\ {3} & {1} & {1} & {1} \end{array}\right] A=[13216151]
此时矩阵的秩为 2 2 2 ,有两个主元,其行最简如下:
R = [ 1 0 − − 0 1 − − ] = [ I F ] R=\left[\begin{array}{llll} {1} & {0} & {-} & {-} \\ {0} & {1} & {-} & {-} \end{array}\right]=\left[\begin{array}{llll} I & F \end{array}\right] R=[1001]=[IF]
注意: F F F 处有值,该部分将构成零空间的special solution;即 R R R 中的各主列构成单位阵, R R R 中没有零行,因此秩是2;

3. 行列均满秩(Full row and column rank): r = m = n r=m=n r=m=n

Example 5:
A = [ 1 2 3 1 ] A=\left[\begin{array}{llll} {1} & {2} \\ {3} & {1} \end{array}\right] A=[1321]
行列均满秩的矩阵一定是方阵,即称为满秩,无需说明是列或者行满秩,因为行等于列,是一回事,此时秩已经达到最大了, r = m = n r=m=n r=m=n ,即行列均满秩的矩阵 A A A 为可逆方阵,其行最简形式 R R R 是单位阵:
R = [ 1 0 0 1 ] = I R=\left[\begin{array}{llll} {1} & {0} \\ {0} & {1} \end{array}\right]=I R=[1001]=I
该矩阵的零空间的维数是 0 0 0 ,即零空间中只有零向量,同时,方程组 A x = b Ax=b Ax=b 一定有解,且是唯一解;因为 r = m r=m r=m 时,总有解,而 r = n r=n r=n 时,解唯一。

4. 总结(Summary)

在这里插入图片描述

注意:第三种情况中的行最简形式 R R R 不一定就是:前面全是主列、后面全是自由列的形式,即行最简形式不一定就是 [ I F ] \left[\begin{array}{llll}I & F\end{array}\right] [IF] 形式,也有可能主列和自由列穿插着,即 I I I F F F 混在一起的。

矩阵的秩决定了方程组解的个数,秩 r r r 包含了所有信息(除了具体的计算结果)。

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值