1.3 Matrices and Elementary Row Operations

Hoffman这本书有个特点,初读文字有些拗口,英语没点阅读功底容易理解错误他的意思,但是如果能读进去,就能发现这本书最好的地方:视角高。如果说Rudin的分析是大巧不工的大师级,Hoffman的线代就是一个略有些唠叨的大师级。从1.3开始,就有些体会出这样的意思。这一节至少有如下两个拔高:矩阵拔高到函数维度,row-equivalence是一个等价关系。
这一节说Matrix和elementary row operations,我在学北大王萼芳那本高等代数时候也是先学的这一块(当然要在行列式之后),当时就觉得很难理解,把一堆数排成方块形有什么作用,对行进行变换的时候为何选那特定的三种变换。Hoffman是从上一节说的system of linear equations得出的matrix,实际是系数矩阵,但随后正式给的定义又是:matrix是从整数对 ( i , j ) (i,j) (i,j) F F F的一个函数,其entry就是这一函数在特定的 ( i , j ) (i,j) (i,j)上的取值;我们常见的矩阵的样子是矩阵最方便的一种表示。
接下来给出三种elementary row operations:某一行变为原来的 c c c ( c ≠ 0 ) (c\neq 0) (c=0);变为自身加上另外一行的 c c c倍;调换两行。这三种都可以分别用一个函数 e e e精确的表示出来,这个 e e e是定义在一个固定的 m m m(矩阵的行数)上,不用管列是多少。为何选这三种?最重要的是这三种方式可以用同样的方式可逆,也就是Theorem 2的结论。由elementary row operations得到的矩阵和原来矩阵是row-equivalent的,并且揭示了row-equivalent满足self-reflexive,symmetric和transitivity,故而是一个等价关系。由于elementary row operations不会改变以该矩阵作为coefficient matrix的方程组系统的解空间,因此Theorem 3说明:row-equivalent的两个矩阵为coefficient matrix对应的方程组系统有相同的解空间。
最后,有一个row-reduced的定义,即满足一是每一个非零行从左往右先碰到的非零元素(leading non-zero entry)必须是1,二是含有“一是”里这样的1的列,其他元素都是0。Theorem 4说明任何一个matrix都可以被row-reduced。证明是纯说理性的,可能那个时代(20世纪70年代)画图不易,硬是像讲故事一样把证明说清楚了。

Exercises

1. Find all solutions to the system of equations

( 1 − i ) x 1 − i x 2 = 0 2 x 1 + ( 1 − i ) x 2 = 0 (1-i)x_1-ix_2=0\\2x_1+(1-i)x_2=0 (1i)x1ix2=02x1+(1i)x2=0
Solution: We have
{ ( 1 − i ) x 1 − i x 2 = 0 2 x 1 + ( 1 − i ) x 2 = 0 ⇒ { 2 x 1 − ( 1 + i ) i x 2 = 0 2 x 1 + ( 1 − i ) x 2 = 0 ⇒ { 2 x 1 + ( 1 − i ) x 2 = 0 2 x 1 + ( 1 − i ) x 2 = 0 \begin{cases}(1-i) x_1-ix_2=0\\2x_1+(1-i) x_2=0\end{cases} \Rightarrow \begin{cases}2x_1-(1+i)ix_2=0\\2x_1+(1-i) x_2=0\end{cases} ⇒ \begin{cases}2x_1+(1-i)x_2=0\\2x_1+(1-i) x_2=0\end{cases} { (1i)x1ix2=02x1+(1i)x2=0{ 2x1(1+i)ix2=02x1+(1i)x2=0{ 2x1+(1i)x2=02x1+(1i)x2=0
so let x 2 = c x_2=c x2=c, we have x 1 = ( i − 1 ) c / 2 x_1=(i-1)c/2 x1=(i1)c/2, so all solutions to the system is
x 1 = ( i − 1 ) c 2 , x 2 = c , ∀ c ∈ C x_1=\dfrac{(i-1)c}{2},\quad x_2=c,\quad ∀c\in C x1=2(i1)c,x2=c,cC

2. If

A = [ 3 − 1 2 2 1 1 1 − 3 0 ] A=\begin{bmatrix}3&-1&2\\2&1&1\\1&-3&0 \end{bmatrix} A=321113210

find all solutions of A X = 0 AX=0 AX=0 by row-reducing A A A.

Solution: Since
[ 3 − 1 2 2 1 1 1 − 3 0 ] → [ 0 8 2 0 7 1 1 − 3 0 ] → [ 0 1 1 0 7 1 1 − 3 0 ] → [ 0 1 1 0 0 − 6 1 0 3 ] → [ 0 1 1 0 0 1 1 0 3 ] → [ 0 1 0 0 0 1 1 0 0 ] \begin{bmatrix}3&-1&2\\2&1&1\\1&-3&0\end{bmatrix}→\begin{bmatrix}0&8&2\\0&7&1\\1&-3&0\end{bmatrix}→\begin{bmatrix}0&1&1\\0&7&1\\1&-3&0\end{bmatrix}→\begin{bmatrix}0&1&1\\0&0&-6\\1&0&3\end{bmatrix}→\begin{bmatrix}0&1&1\\0&0&1\\1&0&3\end{bmatrix}→\begin{bmatrix}0&1&0\\0&0&1\\1&0&0\end{bmatrix} 32111321000187321000117311000110016300110011300110

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值