Chapter 1 (Linear Equations in Linear Algebra): Row reduction and echelon forms (行化简与阶梯式矩阵)

本文为《Linear algebra and its applications》的读书笔记

  • This section refines the method of Section 1.1 into a row reduction algorithm (commonly called Gaussian elimination 高斯消去法) that will enable us to analyze any system of linear equations
  • In the definitions that follow, a leading entry (先导元素) of a row refers to the leftmost nonzero entry (in a nonzero row).

Definition

  • A rectangular matrix is in echelon form (阶梯形) (or row echelon form (行阶梯形)) if it has the following three properties:
    • (1) All nonzero rows are above any rows of all zeros.
    • (2) Each leading entry of a row is in a column to the right of the leading entry of the row above it.
    • (3) All entries in a column below a leading entry are zeros.

Property 3 is a simple consequence (推论) of property 2, but we include it for emphasis.

  • If a matrix in echelon form satisfies the following additional conditions, then it is in reduced echelon form (简化阶梯形) (or reduced row echelon form (简化行阶梯形)):
    • (1) The leading entry in each nonzero row is 1.
    • (2) Each leading 1 is the only nonzero entry in its column.
  • An echelon matrix (respectively, reduced echelon matrix) is one that is in echelon form (respectively, reduced echelon form).
    • The “triangular” matrices, such as
      在这里插入图片描述are in echelon form. In fact, the second matrix is in reduced echelon form.

EXAMPLE 1

  • The following matrices are in echelon form. The leading entries may have any nonzero value; the starred entries (*) may have any value (including zero).
    在这里插入图片描述
  • The following matrices are in reduced echelon form
    在这里插入图片描述

Uniqueness of the Reduced Echelon Form

在这里插入图片描述

  • Any nonzero matrix may be row reduced into more than one matrix in echelon form, using different sequences of row operations.
  • However, the reduced echelon form one obtains from a matrix is unique.

  • If a matrix A A A is row equivalent to an echelon matrix U U U, we call U U U an echelon form (or row echelon form) of A A A ( U U U A A A 的阶梯形);
  • If U U U is in reduced echelon form, we call U U U the reduced echelon form of A A A ( U U U A A A 的简化阶梯形).

Most matrix programs and calculators with matrix capabilities use the abbreviation RREF for reduced (row) echelon form. Some use REF for (row) echelon form.

Pivot Positions 主元位置

  • When row operations on a matrix produce an echelon form, further row operations to obtain the reduced echelon form do not change the positions of the leading entries. Since the reduced echelon form is unique, the leading entries are always in the same positions in any echelon form obtained from a given matrix (给定矩阵化为任一阶梯形时,先导元素总在相同位置上).

DEFINITION

  • A pivot position (主元位置) in a matrix A A A is a location in A A A that corresponds to a leading 1 in the reduced echelon form of A A A.
  • A pivot column (主元列) is a column of A A A that contains a pivot position.
  • A pivot (主元) is a nonzero number in a pivot position that is used as needed to create zeros via row operations.

EXAMPLE 2

  • Row reduce the matrix A A A below to echelon form, and locate the pivot columns of A A A.
    在这里插入图片描述在这里插入图片描述在这里插入图片描述

Notice that pivots are not the same as the actual elements of A A A in the pivot positions

The Row Reduction Algorithm 行化简算法

EXAMPLE 3

Apply elementary row operations to transform the following matrix first into echelon form and then into reduced echelon form:
在这里插入图片描述
SOLUTION

  • STEP 1: Begin with the leftmost nonzero column. This is a pivot column.
    在这里插入图片描述
  • STEP 2: Select a nonzero entry in the pivot column as a pivot. If necessary, interchange rows to move this entry into the pivot position.
    在这里插入图片描述

a computer program usually selects as a pivot the entry in a column having the largest absolute value. This strategy, called partial pivoting (部分主元法), is used because it reduces roundoff errors in the calculations.

  • STEP 3: Use row replacement operations to create zeros in all positions below the pivot.
    在这里插入图片描述
  • STEP 4: Cover (or ignore) the row containing the pivot position and cover all rows, if any, above it. Apply steps 1–3 to the submatrix that remains. Repeat the process until there are no more nonzero rows to modify.
    • With row 1 covered, step 1 shows that column 2 is the next pivot column
      在这里插入图片描述在这里插入图片描述
    • When we cover the row containing the second pivot position for step 4, we are left with a new submatrix having only one row:
      在这里插入图片描述Steps 1–3 require no work for this submatrix, and we have reached an echelon form of the full matrix.
  • STEP 5 (进一步化为简化阶梯形): Beginning with the rightmost pivot and working upward and to the left, create zeros above each pivot. If a pivot is not 1, make it 1 by a scaling operation
    在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

Solutions of Linear Systems

  • Suppose, for example, that the augmented matrix of a linear system has been changed into the equivalent reduced echelon form
    在这里插入图片描述在这里插入图片描述The variables x 1 x_1 x1 and x 2 x_2 x2 corresponding to pivot columns in the matrix are called basic variables (基本变量). The other variable, x 3 x_3 x3, is called a free variable (自由变量).
  • Whenever a system is consistent, the solution set can be described explicitly by solving the reduced system of equations for the basic variables in terms of the free variables. This operation is possible because the reduced echelon form places each basic variable in one and only one equation.

  • In (4), solve the first equation for x 1 x_1 x1 and the second for x 2 x_2 x2.
    在这里插入图片描述Each different choice of x 3 x_3 x3 determines a (different) solution of the system, and every solution of the system is determined by a choice of x 3 x_3 x3.

上面的联立方程组也称为 通解 (the general solution)


EXAMPLE 4

Find the general solution of the linear system whose augmented matrix has been reduced to
在这里插入图片描述
SOLUTION

  • The matrix is in echelon form, but we want the reduced echelon form before solving for the basic variables.
    在这里插入图片描述在这里插入图片描述The pivot columns of the matrix are 1, 3, and 5, so the basic variables are x 1 x_1 x1, x 3 x_3 x3, and x 5 x_5 x5. The remaining variables, x 2 x_2 x2 and x 4 x_4 x4, must be free. Solve for the basic variables to obtain the general solution:
    在这里插入图片描述

Application:interpolating polynomial (插值多项式)

  • Suppose experimental data are represented by a set of points in the plane. An interpolating polynomial for the data is a polynomial whose graph passes through every point. In scientific work, such a polynomial can be used, for example, to estimate values between the known data points.
  • One method for finding an interpolating polynomial is to solve a system of linear equations.
    • e.g. Find the interpolating polynomial p ( t ) = a 0 + a 1 t + a 2 t 2 p(t) =a_0+a_1t+a_2t^2 p(t)=a0+a1t+a2t2 for the data ( 1 , 12 ) , ( 2 , 15 ) , ( 3 , 16 ) (1, 12), (2, 15), (3, 16) (1,12),(2,15),(3,16)
      在这里插入图片描述

当然,实际问题肯定比这负责,比如说这个线性方程组可能是 inconsistent 的,这时候就不能直接求解,而是要去取近似值了,详见 Applications to linear models

Parametric Descriptions of Solution Sets 解集的参数表示

  • In parametric descriptions of solution sets, the free variables act as parameters:
    在这里插入图片描述
  • Whenever a system is consistent and has free variables, the solution set has many parametric descriptions. However, to be consistent, we make the (arbitrary) convention of always using the free variables as the parameters for describing a solution set.
  • Whenever a system is inconsistent, the solution set has no parametric representation.

Back-Substitution 回代

  • A computer program would solve the linear system by back-substitution, rather than by computing the reduced echelon form.
    • e.g. 程序先得到如下的 echelon form. 然后解第 3 个方程,用 x 5 x_5 x5 表示 x 4 x_4 x4,并将此表达式代入第 2 个方程,解出 x 2 x_2 x2,最后把 x 2 x_2 x2 x 4 x_4 x4 的表达式代入第 1 个方程解出 x 1 x_1 x1
      在这里插入图片描述

Existence and Uniqueness Questions

  • Although a nonreduced echelon form is a poor tool for solving a system, this form is just the right device for answering two fundamental questions:
    在这里插入图片描述

EXAMPLE 5

Determine the existence and uniqueness of the solutions to the system
在这里插入图片描述
SOLUTION
在这里插入图片描述

  • The basic variables are x 1 x_1 x1, x 2 x_2 x2, and x 5 x_5 x5; the free variables are x 3 x_3 x3 and x 4 x_4 x4. There is no equation such as 0 = 1 0 = 1 0=1 that would indicate an inconsistent system.
  • The existence of a solution is already clear. Also, the solution is not unique because there are free variables. (Each different choice of x 3 x_3 x3 and x 4 x_4 x4 determines a different solution)

在这里插入图片描述

这也解释了为什么方程个数少于未知数个数时 (欠定方程组),若相容,则一定有无穷多解


USING ROW REDUCTION TO SOLVE A LINEAR SYSTEM

  1. Write the augmented matrix of the system.
  2. Use the row reduction algorithm to obtain an equivalent augmented matrix in echelon form. Decide whether the system is consistent. If there is no solution, stop; otherwise, go to the next step.
  3. Continue row reduction to obtain the reduced echelon form.
  4. Write the system of equations corresponding to the matrix obtained in step 3.
  5. Rewrite each nonzero equation from step 4 so that its one basic variable is expressed in terms of any free variables appearing in the equation.
### 回答1: 《微分方程线性代数PDF》是一本关于微分方程和线性代数的电子书。微分方程和线性代数是数学中的重要分支,它们在各个学科和应用领域中都有广泛的应用。 微分方程是描述自然界和社会现象中变化规律的数学模型。它通过建立方程式来描述变量之间的关系,包括未知函数及其导数或微分。微分方程可以分为常微分方程和偏微分方程两类。常微分方程是只涉及一个未知函数的方程,而偏微分方程是涉及多个未知函数及其偏导数的方程。学习微分方程可以帮助我们理解和解决很多实际问题,如物理学中的运动学问题、化学反应的动力学过程以及经济学中的最优化问题等。 线性代数是研究向量空间及其线性变换的数学分支。向量空间是由一组向量组成的集合,线性变换则是将一个向量空间映射到另一个向量空间的变换。线性代数的基础概念包括向量、矩阵、线性方程组、特征值等。学习线性代数可以提供一种抽象和整体的思维方式,帮助我们理解和解决在各个领域中的实际问题,如计算机科学中的图像处理、金融学中的模型建立以及物理学中的量子力学等。 《微分方程线性代数PDF》将微分方程和线性代数结合在一起,有助于我们深入理解它们之间的联系和应用。通过学习该电子书,我们可以更全面地了解微分方程和线性代数的基本概念和方法,掌握它们的解法和求解技巧,从而在解决实际问题时能够更加灵活和准确地运用它们。 总之,微分方程和线性代数在数学和应用中都具有重要的地位,《微分方程线性代数PDF》提供了一个系统和综合的学习资源,能够帮助我们深入学习和应用微分方程和线性代数的知识。 ### 回答2: 《微分方程和线性代数》是一本关于微分方程和线性代数的PDF电子书。微分方程和线性代数是数学中的两个重要分支。微分方程研究描述变化率的方程,而线性代数则研究向量空间和线性映射。这两个领域在应用数学和科学领域中具有广泛的应用。 这本PDF电子书提供了微分方程和线性代数的基本概念、原理和技巧的介绍。它可以作为大学数学学科的教材,也可以作为自学的参考书。通过学习此书,读者可以深入理解微分方程和线性代数之间的联系和应用。 这本电子书的内容包括但不限于以下主题:常微分方程、偏微分方程、线性代数的基本概念、矩阵理论、线性方程组和特征值问题。每个主题都配有例题和习题,帮助读者巩固所学知识并提高解题能力。此外,书中还介绍了一些实际应用和数值方法,如数值解微分方程和线性代数的计算方法。 总之,《微分方程和线性代数》这本PDF电子书提供了一个系统而全面的学习微分方程和线性代数的资源。对于那些对这两个领域感兴趣的读者,它将是一个有益的学习工具。无论是学生还是专业人员,都可以从中获得知识和技能,以在数学和相关领域取得更好的成果。 ### 回答3: "微分方程和线性代数"是一个PDF文件。微分方程是数学中研究函数以及它们的导数之间关系的一个重要领域。它在描述自然界中的现象和工程学中的问题时起着关键作用。 线性代数是研究向量空间和线性变换的一门数学学科。它研究的对象包括向量、矩阵、线性方程组等。线性代数在计算机科学、物理学、经济学等领域有广泛应用。 "Differential Equations and Linear Algebra"这本PDF将这两个数学学科结合在一起,以解决更为复杂的问题。它讲述了如何使用线性代数的工具和方法来解决微分方程。这种结合使得我们可以更加全面地理解和分析各种现象和问题。 这本PDF可能会涵盖诸如常微分方程、偏微分方程、矩阵理论、特征值和特征向量等内容。通过学习这本PDF,读者将能够掌握建立微分方程和线性代数之间关系的基础知识和技能。 总之,这本"Differential Equations and Linear Algebra"的PDF文件是一个帮助我们理解和解决更为复杂问题的资源。它将微分方程和线性代数的概念和方法结合在一起,为我们提供了一种更全面且更深入的数学工具。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值