1.4 Row-Reduced Echelon Matrices

本文探讨了行阶梯矩阵的概念及其在解线性方程组中的应用。通过行简化过程,可以方便地找到方程组的解。非齐次线性系统可能有唯一解、无穷多解或无解,这取决于系数矩阵的行阶梯形式。此外,文章还提供了多个练习题,涉及不同类型的行阶梯矩阵和线性方程组的解法。
摘要由CSDN通过智能技术生成

我已经忘了这个概念中文如何翻译,但是其本质就是在Row-reduced的基础上,作行的对调,使得所有非零行在上面且每一行开头的1以从左至右自上而下的方式排列、所有零行在下面。这也是Theorem 5的结论,即任何 m × n m\times n m×n矩阵都和一个row-reduced echelon matrix是行等价的。
前两节讨论了如此多的row-reduced问题,目的是为了解方程组,因为row-reduced的形式使得解方程非常方便,并且如果非零行数比未知数的个数少,那么一定有非退化解(non-trivial solution),即不是0向量的解。Theorem 6是一个更强的假设和更弱一些的结论:如果 A A A m × n m\times n m×n矩阵且 m < n m<n m<n,那么 A X = 0 AX=0 AX=0一定有non-trivial solution。Theorem 7是一个特殊一点的结论: n × n n\times n n×n方阵行等价于单位矩阵的充要条件是 A X = 0 AX=0 AX=0只有0解。
以上已经讨论了足够多的关于homogeneous system的结论。如果将条件放松,即 A X = 0 AX=0 AX=0变为 A X = Y AX=Y AX=Y,那么需要考虑augmented matrix [ A Y ] \begin{bmatrix}A&Y\end{bmatrix} [AY], 在inhomogeneous system中,首先要考虑的是有没有解(不像homogeneous system里一定有0解),按照Theorem 4Theorem 5可以将 A A A变为一个row-reduced echelon matrix A ′ A' A,对应的会把 Y Y Y变成一个新的列向量 Z Z Z, 那么这个system有解的充要条件是 A ′ A' A里全为零的最后几行对应的 Z Z Z的最后几个分量也都是0。
最后有一个看似很奇怪但确实正确的结论: A X = Y AX=Y AX=Y如果 A , Y A,Y A,Y都是在 F F F的一个subfield F 1 F_1 F1上,那么其在 F F F中有解可以推出其在 F 1 F_1 F1中有解。

Exercises

1.Find all solutions to the following systems of equations by row-reducing the coefficient matrix:

1 3 x 1 + 2 x 2 − 6 x 3 = 0 − 4 x 1 + 5 x 3 = 0 − 3 x 1 + 6 x 2 − 13 x 3 = 0 − 7 3 x 1 + 2 x 2 − 8 3 x 3 = 0 \begin{aligned}\frac{1}{3}&x_1+2x_2&-6x_3=0\\-4&x_1&+5x_3=0\\-3&x_1+6x_2&-13x_3=0\\-\frac{7}{3}&x_1+2x_2&-\frac{8}{3}x_3=0\end{aligned} 314337x1+2x2x1x1+6x2x1+2x26x3=0+5x3=013x3=038x3=0
Solution: We have
[ 1 / 3 2 − 6 − 4 0 5 − 3 6 − 13 − 7 / 3 2 − 8 / 3 ] → [ 1 6 − 18 0 24 − 67 0 24 − 67 − 7 6 − 8 ] → [ 1 6 − 18 0 24 − 67 0 0 0 0 48 − 134 ] → [ 1 6 − 18 0 24 − 67 0 0 0 0 0 0 ] \begin{bmatrix}1/3&2&-6\\-4&0&5\\-3&6&-13\\-7/3&2&-8/3\end{bmatrix}\rightarrow\begin{bmatrix}1&6&-18\\0&24&-67\\0&24&-67\\-7&6&-8\end{bmatrix}\rightarrow\begin{bmatrix}1&6&-18\\0&24&-67\\0&0&0\\0&48&-134\end{bmatrix}\rightarrow\begin{bmatrix}1&6&-18\\0&24&-67\\0&0&0\\0&0&0\end{bmatrix} 1/3437/3206265138/310076242461867678100062404818670134100062400186700
let x 3 = c x_3=c x3=c, then all solutions is of the form:
x 1 = 1062 67 c , x 2 = 24 67 c , x 3 = c , c ∈ R x_1=\dfrac{1062}{67} c,\quad x_2=\dfrac{24}{67} c,\quad x_3=c,\quad c\in R x1=671062c,x2=6724c,x3=c,cR

2. Find a row-reduced echelon matrix which is row-equivalent to

A = [ 1 − i 2 2 i 1 + i ] A=\begin{bmatrix}1&-i\\2&2\\i&1+i\end{bmatrix} A=12ii21+i

What are the solutions of A X = 0 AX=0 AX=0?

Solution: We have
A = [ 1 − i 2 2 i 1 + i ] → [ 1 1 0 − i − 1 i 1 + i ] → [ 1 1 0 1 0 − i ] → [ 1 0 0 1 0 0 ] A=\begin{bmatrix}1&-i\\2&2\\i&1+i\end{bmatrix}\rightarrow\begin{bmatrix}1&1\\0&-i-1\\i&1+i\end{bmatrix}\rightarrow\begin{bmatrix}1&1\\0&1\\0&-i\end{bmatrix}\rightarrow\begin{bmatrix}1&0\\0&1\\0&0\end{bmatrix} A=12ii21+i10i1i11+i

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值