NPU介绍
简介
NPU(Neural Processing Unit,神经网络处理单元)是一种专门用于加速人工智能计算任务的处理器。它是为运行复杂的神经网络算法而设计的,通常用于推理(inference)和有时用于训练(training)深度学习模型。NPU是AI加速器的一种,它旨在提供比传统CPU和GPU更高的能效比和性能。
为什么需要npu
-
特定优化:NPU针对深度学习和神经网络计算进行了专门的优化,可以更高效地执行矩阵乘法、卷积运算等深度学习任务。
-
能效比:NPU在执行特定任务时,能效比远高于传统的CPU。它们可以在低功耗下提供高性能,这对于移动设备和边缘计算设备尤为重要。
-
并行处理:NPU设计有大量的并行处理单元,能够同时处理多个计算任务,这对于需要大规模并行处理的深度学习模型来说是一个巨大优势。
NPU与CPU的区别
设计目标
CPU:作为通用处理器,CPU的设计目标是处理各种类型的数据和指令,包括逻辑判断、数值计算等。
NPU:NPU专为深度学习和神经网络计算设计,其硬件和指令集针对这些特定任务进行了优化。
性能
CPU:CPU在处理复杂的通用计算任务时非常灵活,但在执行深度学习任务时,其性能和能效可能不如NPU。
NPU:NPU可以显著提高深度学习任务的计算速度,同时保持较低的功耗。
架构
CPU:CPU通常由多个核心组成,每个核心可以执行顺序计算任务。
NPU:NPU包含大量并行处理单元,这些单元可以同时执行相同的或不同的计算任务。
适用场景
CPU:CPU适用于广泛的计算任务,包括操作系统管理、应用程序运行等。
NPU:NPU专门用于加速深度学习模型中的推理和训练过程。
可编程性
CPU:CPU具有很高的可编程性,可以动态调整来执行不同的任务。
NPU:NPU的可编程性相对较弱,其硬件架构和指令集通常是固定的,优化用于特定的深度学习任务。
总结:NPU的引入是为了更高效地处理AI相关任务,它在性能和能效上对比CPU有明显的优势,但牺牲了一些通用性和可编程性。随着人工智能技术的快速发展,NPU已经成为许多AI设备和系统中的一个关键组件
关键特点和介绍
功能和设计
专用的架构:NPU采用专门为神经网络计算设计的架构,这些架构针对深度学习中的特定操作(如卷积、池化、激活函数等)进行了优化。
能效比:NPU旨在提供高能效比,这意味着它们可以在较低功耗下提供高性能,这对于移动设备和边缘计算非常重要。
应用场景
推理:NPU广泛用于执行推理任务,如图像识别、语音识别、自然语言处理等。
边缘计算:在边缘计算环境中,NPU可以帮助设备在没有云连接的情况下进行本地AI处理。
NPU优势
性能:NPU可以显著提高深度学习模型的处理速度。
能效:由于NPU专为深度学习任务设计,因此在执行这些任务时比传统的CPU或GPU更节能。
简化开发:使用NPU可以简化深度学习应用的开发过程,因为它们通常配备有易于使用的API和软件库。
未来趋势
随着AI技术的不断发展,NPU的设计和功能也在不断进步。未来的NPU可能会集成更先进的特性,如更高效的计算架构、更强大的并行处理能力以及对新型神经网络的支持。
瑞芯微rknpu
发展史
早期发展
瑞芯微电子成立于2001年,最初是一家专注于集成电路设计的公司,主要产品是嵌入式处理器和相关IP。随着人工智能技术的兴起,瑞芯微开始关注到AI计算的需求,并逐步投入资源开发专用的AI加速器。
rknpu的引入
瑞芯微在原有的处理器产品基础上,引入了rknpu技术,这是一种专门为神经网络计算设计的硬件加速器。rknpu的引入标志着瑞芯微正式进入AI处理器市场,并为用户提供了一种高效的AI计算解决方案。
rknpu的迭代
瑞芯微不断迭代其rknpu产品线,推出了多个版本的NPU,每个版本都在性能、能效和兼容性方面进行了改进。以下是一些关键的迭代:
RK3399Pro:这是瑞芯微推出的一款集成了NPU核心的高性能AI处理器,适用于需要强大AI计算能力的场景。
RK1808:这款SoC集成了NPU,适用于边缘计算和工业自动化等领域,提供了平衡的性能和能效。
RK3566/RK3568:这些是瑞芯微推出的新一代处理器,其中集成了第三代rknpu,提供了更高的性能和能效比。
RK3588:瑞芯微 RK3588 芯片内置 NPU,是 RKNPU 第四代的代表产品。
- 支持三核合作模式,双核合作模式,核心单独工作模式。
- 支持整数 4、整数 8、整数 16、浮点 16、Bfloat 16 和 tf32 运算
- 内置的 NPU 支持 INT4/INT8/INT16/FP16/TF32 混合操作
- 推理工具支持:TensorFlow、Caffe、Tflite、Pytorch、Onnx NN、Android NN等
- 高达 6 TOPS 的神经网络加速处理性能。
技术进步
随着技术的进步,瑞芯微的rknpu在以下几个方面取得了显著的发展:
- 性能提升:瑞芯微不断优化NPU架构,提高了算力,使得rknpu能够处理更复杂的神经网络模型。
- 能效优化:通过改进设计和制造工艺,瑞芯微的rknpu在低功耗下依然能够提供高性能。
- 软件生态:瑞芯微为rknpu提供了软件开发工具和API,支持多种神经网络框架,使得开发者能够更容易地集成AI功能。
市场应用
瑞芯微的rknpu已经被广泛应用于多个领域,包括智能摄像头、智能家居、边缘计算、工业自动化等。随着AI技术的普及,rknpu的市场应用范围也在不断扩大。
未来展望
瑞芯微继续在AI领域进行研发投入,未来可能会推出更先进的rknpu产品,以满足不断增长的市场需求和应对激烈的行业竞争。
rknpu开发环境部署
在虚拟机下新建一个目录来存放rknn仓库,在这里我建一个mlknpu的文件夹,并将RKNN-Toolkit2仓 库存放至该目录下
mkdir mlknpu
cd mlknpu
下载
通过指令下载,注意:虚拟机网络需要开启代理
git clone https://github.com/airockchip/rknn-toolkit2.git --depth 1
RKNN-Toolkit2 工具
介绍
RKNN-Toolkit2 是由瑞芯微电子(Rockchip)开发的一款深度学习模型优化和推理工具,旨在帮助开发者在瑞芯微SoC上进行AI应用的开发。
主要特点和功能
模型转换
- 支持将多种深度学习框架的模型(如Caffe、TensorFlow、TensorFlow Lite、ONNX、DarkNet、PyTorch等)转换为RKNN格式,使其能够在瑞芯微的NPU(神经处理单元)上运行。
- 支持RKNN模型的导入和导出,便于在不同的环境中使用。
量化功能
- 支持将浮点模型量化为定点模型,以减少模型大小和提高推理速度。目前支持的量化方法包括非对称量化(asymmetric quantized-8和asymmetric quantized-16)以及混合量化。
模型推理
- 能够在PC上模拟NPU运行RKNN模型,从而获取推理结果。