Focal Loss 的详细解释

Focal Loss 是一种专为解决类别不平衡问题而设计的损失函数,最初由 Facebook AI 研究团队在 2017 年提出,特别用于物体检测任务(如 RetinaNet 模型)。在这些任务中,正负样本(即目标对象和背景)的数量常常极为不平衡,导致模型在训练过程中过度关注于简单的负样本,从而影响模型的性能。Focal Loss 在一定程度上解决了这一问题。

1. Focal Loss 的基本形式

Focal Loss 是对交叉熵损失(Cross Entropy Loss)的改进。传统的交叉熵损失函数在分类问题中表示为:

其中,ptp_tpt​ 是模型对实际类别的预测概率。

Focal Loss 在此基础上引入了两个新参数:调制因子(modulating factor)缩放因子(scaling factor),具体形式为:

  • αt:平衡因子(balance factor),用于平衡正负样本的权重。它是一个介于 0 和 1 之间的系数,有时通过经验调整࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值