Focal Loss 是一种专为解决类别不平衡问题而设计的损失函数,最初由 Facebook AI 研究团队在 2017 年提出,特别用于物体检测任务(如 RetinaNet 模型)。在这些任务中,正负样本(即目标对象和背景)的数量常常极为不平衡,导致模型在训练过程中过度关注于简单的负样本,从而影响模型的性能。Focal Loss 在一定程度上解决了这一问题。
1. Focal Loss 的基本形式
Focal Loss 是对交叉熵损失(Cross Entropy Loss)的改进。传统的交叉熵损失函数在分类问题中表示为:
其中,ptp_tpt 是模型对实际类别的预测概率。
Focal Loss 在此基础上引入了两个新参数:调制因子(modulating factor) 和 缩放因子(scaling factor),具体形式为:
-
αt:平衡因子(balance factor),用于平衡正负样本的权重。它是一个介于 0 和 1 之间的系数,有时通过经验调整