通信原理04:数字信号基带传输

一、线路码型

1. 码型设计基本原则

码型设计是数字信息的电脉冲表示,使数字信息变换为适合于给定信道传输特性的频谱结构。

码型设计的基本原则:

(1)对于传输频带低端受限的信道,一般来讲线路传输码型的频谱中应不含直流分量; 

(2)码型变换(或码型编译码)过程应对任何信源具 有透明性,即与信源的统计特性无关;

(3)便于从基带信号中提取位定时信息;

(4)便于实时监测传输系统信号传输质量,即能检测出基带信号码流中错误的信号状态;

(5)误码增值愈少愈好(无误码扩散);

(6)当采用分组形式的传递码型时(如5B6B、4B3T 码等),在接收端不但要从基带信号中提取位定时信息, 而且要恢复出分组同步信息,以便将收到的信号正确地划分成固定长度的码组(帧同步/分组同步);

(7)尽量减少基带信号频谱中的高频分量;

(8)编译码设备应尽量简单。

2. 二元码

 a = \frac{T}{2},主瓣:|f| \leq \frac{1}{2a} = \frac{1}{T}

 mBnB码:将m bit的信息用n个二元码表示

编码效率:\eta = \frac{m \log_{2} 2 }{n \log_{2} 2} = \frac{m}{n}

数字双相码:1B2B码,\eta = 50%

3. 三元码

在三元码数字基带信号中,信号幅度的取值有三个:+1、0、-1

(1)传号交替反转码(AMI)

非零正负交替,无直流分量,不易提取定时信息

 (2)HDB3

1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0

1 0 0 0 V 0 1 1 B 0 0 V B 0 0 V 1 0 0 0 V 1 0 0

+1 0 0 0 V 0 -1 +1 -1 0 0 V +1 0 0 V -1 0 0 0 V +1 0 0

+1 0 0 0 +1 0 -1 +1 -1 0 0 -1 +1 0 0 +1 -1 0 0 0 -1 +1 0 0

mBnT码:将m bit的信息用n个三元码表示

编码效率:\eta = \frac{m \log_{2} 2}{n \log_2 3}

HDB3:1B1T码

4. 多元码

二、符号映射与波形成形

1. 比特、符号和波形

比特:信息单位,\{0,1\}

符号:物理概念,离散时间,离散幅度。比特在现实世界中传输需要映射为物理量,如电压\{+A,-A\}。给定一个符号集合\{ a_1,a_2,a_3,\dots,a_M \},其可以承载的比特数量为n = \log_2 M。传输一个符号所需的时间为T_s,则符号速率为R_s = \frac{1}{T_s},比特速率为R_b = R_s \log_2 M

波形:将离散的符号映射为时间和幅度均连续的模拟信号。

 g(t)是成形脉冲,是将离散的符号映射为通信波形的纽带。无线通信要求传输信号的频域带宽有限,因此要求g(t)为带限信号。

2. 奈奎斯特第一准则(采样点无失真准则)

采样点无失真:a(nT_s) = a_n

对于t = nT_s

a(t) \cdot \sum_{n=-\infty}^{\infty} \delta(t-nT_s) = \sum_{n=-\infty}^{\infty} a(nT_s) \delta(t-nT_s)

整理得

\sum_{k=-\infty}^{\infty} a_k g(t-kT_s) \cdot \sum_{n=-\infty}^{\infty} \delta(t-nT_s) = \sum_{n=-\infty}^{\infty} a_n \delta(t-nT_s)

g(t) \otimes \sum_{k=-\infty}^{\infty} a_k \delta(t-kT_s) \cdot \sum_{n=-\infty}^{\infty} \delta(t-nT_s) = \sum_{n=-\infty}^{\infty} a_n \delta(t-nT_s)

F\left[ \sum_{n=-\infty}^{\infty} a_n \delta(t-nT_s) \right ] = \int_{-\infty}^{\infty} e^{-jwt}\left( \sum_{n=-\infty}^{\infty} a_n \delta(t-nT_s) \right ) dt \\= \int_{-\infty}^{\infty} \sum_{n=-\infty}^{\infty} a_n e^{-jwnT_s}\delta(t-nT_s) dt \\= \sum_{n=-\infty}^{\infty} a_n e^{-jwnT_s} \int_{-\infty}^{\infty} \delta(t-nT_s) dt\\=\sum_{n=-\infty}^{\infty} a_n e^{-jwnT_s}  

G(w) \sum_{k=-\infty}^{\infty} a_k e^{-jwkT_s} \otimes \frac{1}{2\pi} \frac{2\pi}{T_s} \sum_{n=-\infty}^{\infty} \delta(w-nw_s) = \sum_{n=-\infty}^{\infty} a_n e^{-jwnT_s}

G(w) \otimes \frac{1}{T_s} \sum_{n=-\infty}^{\infty} \delta(w-nw_s) = 1

\sum_{n=-\infty}^{\infty} G(w-nw_s) = T_s

  • 将波形传递函数频域响应𝐺(𝜔)实部和虚 部均以2𝜋/𝑇𝑠为单位进行分段;
  • 将各分段都沿着𝜔轴平移到[− 𝜋/𝑇𝑠 , 𝜋/𝑇𝑠 ]之间 ,并将它们叠加起来;
  • 实部叠加结果为固定值(常数),虚部叠加结果为0。

3. 符号速率与频谱效率

符号速率R_s:单位时间内传输的符号数量,signal/s = Baud

比特速率R_b:单位时间内传输的比特数量,bit/s

R_b = R_s \log_2 M

频谱效率:\eta = \frac{R_b}{ W },单位频谱上所承载的通信速率

由奈奎斯特第一准则可知:2W \geq R_s,W单位为Hz

\eta = \frac{R_s \log_2 M}{ W } \leq \frac{2W \log_2 M}{W} = 2\log_2 M

 4. 升余弦成形滤波器

 下降沿起始于\frac{R_s}{2}(1-\alpha) = \frac{(1-\alpha)}{2T_s},终止于\frac{R_s}{2}(1+\alpha) = \frac{(1+\alpha)}{2T_s}

整个下降沿关于f=\frac{R_s}{2}, H = \frac{T_s}{2}中心对称。

带宽:W = \frac{R_s}{2} (1+\alpha)

频谱效率:\eta = \frac{R_s}{W} = \frac{2}{1+\alpha}

5. 通信波形的功率谱 

a(t) = \sum_{k=-\infty}^{+\infty} a_k \cdot g(t-kT_s)

推导过程略

P_a(f) = \frac{\sigma_a^2}{T_s} |G(f)|^2 + \frac{m_a^2}{T_s^2} \sum_{k=-\infty}^{+\infty} \left|G\left( \frac{n}{T_s} \right) \right|^2 \delta(f-nT_s)

其中,m_a为符号均值,\sigma_a^2为符号方差。

三、最佳接收与匹配滤波

实际信道存在噪声,因此接收机前端一般存在滤波器滤去噪声。

 1. 信噪比最大化

 Y(t) = a \cdot g(t) +N(t)

\hat{a} = \int_{-\infty}^{+\infty} Y(t)h(t) dt = a\int_{-\infty}^{\infty} g(t)h(t) dt + \int_{-\infty}^{\infty} N(t) h(t) dt

N = E\left[ \left( \int_{-\infty}^{\infty} N(t) h(t) dt \right )^2 \right ] \\= E\left[ \int_{-\infty}^{\infty} N(t) h(t) dt \int_{-\infty}^{\infty} N(\tau) h(\tau) d\tau \right ] \\= E\left[ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} N(t) h(t)N(\tau) h(\tau) d\tau dt \right ] \\= E\left[ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} N(t) h(t)N(\tau) h(\tau) d\tau dt \right ] \\= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} E\left[ N(t)N(\tau) \right ] h(t)h(\tau) d\tau dt \\= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{n_0}{2}\delta(t-\tau) h(t)h(\tau) d\tau dt \\= \frac{n_0}{2} \int_{-\infty}^{\infty} h(t) \left( \int_{-\infty}^{\infty} \delta(t-\tau) h(\tau) d\tau \right ) dt \\= \frac{n_0}{2} \int_{-\infty}^{\infty} h(t) \cdot (h(t) \otimes \delta(t) )dt \\= \frac{n_0}{2} \int_{-\infty}^{\infty} h^2(t) dt
S = \left[ a\int_{-\infty}^{\infty} g(t)h(t) dt \right ]^2 = a^2 \left[ \int_{-\infty}^{\infty} g(t)h(t) dt \right ]^2 \\ \leq a^2 \int_{-\infty}^{\infty} g^2(t) dt \int_{-\infty}^{\infty} h^2(t) dt

当且仅当h(t) = g(t)时等号成立

SNR = \frac{S}{N} = \frac{a^2 \left[ \int_{-\infty}^{\infty} g(t)h(t) dt \right ]^2}{\frac{n_0}{2} \int_{-\infty}^{\infty} h^2(t) dt} \leq \frac{a^2 \int_{-\infty}^{\infty} g^2(t) dt \int_{-\infty}^{\infty} h^2(t) dt }{\frac{n_0}{2} \int_{-\infty}^{\infty} h^2(t) dt} = \frac{a^2}{n_0 /2} \int_{-\infty}^{\infty} g^2(t) dt

当且仅当h(t) = g(t)时等号成立。

即,当h(t) = g(t)时,再生判决输出信噪比最大。

 \hat{a} = \int_{-\infty}^{\infty} Y(t) g(t) dt

\hat{a} = \int_{-\infty}^{\infty} Y(t) h_m(t_0 -t) dt

g(t) = h_m(t_0 - t),等价于h_m(t) = g(t_0 - t)

 2. 匹配滤波器的信噪比增益

 匹配滤波器输入信噪比:

S_{\rm in} = E_s R_s = R_s a^2 \int_{-\infty}^{\infty} g^2(t) dt

N_{\rm in} = \frac{n_0}{2} \cdot 2W = n_0 W
SNR_{\rm in} = \frac{S_{\rm in}}{N_{\rm in}} = \frac{R_s a^2 }{n_0 W} \int_{-\infty}^{\infty} g^2(t) dt

匹配滤波器输出信噪比:

SNR_{\rm out} = \frac{a^2}{n_0 /2} \int_{-\infty}^{\infty} g^2(t) dt

匹配滤波器信噪比增益:

G = \frac{SNR_{\rm out}}{SNR_{\rm in}} = \frac{\frac{a^2}{n_0 /2} \int_{-\infty}^{\infty} g^2(t) dt}{ \frac{R_s a^2 }{n_0 W} \int_{-\infty}^{\infty} g^2(t) dt } = \frac{2W}{R_s} = \frac{2}{\eta}

 匹配滤波的输出信噪比与频谱效率或滚降系数均无关。

3. 根升余弦波形成形函数

 4. 等效基带模型

 四、最佳判决与差错概率

1. 最佳判决的若干准则

 2. M元ASK星座

 E_s = \frac{2\sum_{k=0}^{\frac{M-2}{2}}(2k+1)^2A^2}{M} \\= \frac{2A^2}{M} \sum_{k=0}^{\frac{M}{2} -1} (2k+1)^2 \\= \frac{2A^2}{M} \left[ 4\frac{(\frac{M}{2}-1) \frac{M}{2} (M-2+1)}{6} +4 \frac{\frac{M}{2}(\frac{M}{2} -1)}{2} + \frac{M}{2} \right ] \\= A^2 \left[ 2 \frac{(\frac{M}{2}-1) (M-2+1)}{3} + 2(\frac{M}{2} -1) + 1 \right ] \\= \frac{M^2-1}{3} A^2 

 A = \sqrt{\frac{3E_s}{M^2-1}}

3. 数字基带传输的差错分析方法

双极性ASK星座点:

 A =\{ -(M-1)A,\dots,-3A,-A,A,3A,\dots,(M-1)A \}

判决门限:

-(M-2)A,\dots,-2A,0,2A,\dots,(M-2)A

 以星座点-(M-1)A为例,当n>A时,产生误判,则条件差错的概率为

\int_{A}^{+\infty} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{x^2}{2\sigma^2}} dx |_{\sigma^2 = \frac{n_0}{2}} \\= \int_{A}^{+\infty} \frac{1}{\sqrt{n_0\pi}} e^{-\frac{x^2}{n_0}} dx \\= \int_{\frac{A}{\sqrt{n_0/2}}}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz\\= Q\left( \frac{A}{\sqrt{n_0/2}} \right )

以星座点A为例,当|n|>A时,会产生误判,则条件差错的概率为
 \int_{-\infty}^{-A} + \int_{A}^{+\infty} \frac{1}{\sqrt{n_0\pi}} e^{-\frac{x^2}{n_0}} dx \\= 2 \int_{\frac{A}{\sqrt{n_0/2}}}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz\\= 2 Q\left( \frac{A}{\sqrt{n_0/2}} \right )

无符号率:

p_s = \frac{1}{M} \left[ (M-2) 2 Q\left( \frac{A}{\sqrt{n_0/2}} \right ) + 2 Q\left( \frac{A}{\sqrt{n_0/2}} \right ) \right ] = \frac{2(M-1)}{M} Q\left( \frac{A}{\sqrt{n_0/2}} \right )

有之前计算可知:E_s = \frac{M^2 -1}{3}A^2

整理可得:

p_s = \frac{2(M-1)}{M} Q\left( \sqrt{\frac{3E_s}{M^2 -1}} \frac{1}{\sqrt{n_0/2}} \right ) = \frac{2(M-1)}{M} Q\left( \sqrt{\frac{6}{M^2 -1} \frac{E_s}{n_0}} \right )

采用格雷码,求得误比特率:

p_b \approx \frac{p_s}{\log_2 M} = \frac{2(M-1)}{M \log_2 M} Q\left( \sqrt{\frac{6}{M^2 -1} \frac{E_s}{n_0}} \right )

E_s = E_b \log_2 M,则

p_s = \frac{2(M-1)}{M} Q\left( \sqrt{\frac{6\log_2 M}{M^2 -1} \frac{E_b}{n_0}} \right )

p_b \approx \frac{2(M-1)}{M \log_2 M} Q\left( \sqrt{\frac{6\log_2 M}{M^2 -1} \frac{E_b}{n_0}} \right )

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值