函数的调用

文章介绍了C++中如何进行函数的嵌套调用,通过计算方程f(x)=x^3-5x^2+16x-80的根来展示,同时解释了如何确保满足精度要求。此外,还讨论了函数的递归调用,以汉诺塔问题为例,演示了如何使用递归解决复杂问题。
摘要由CSDN通过智能技术生成

一、函数的嵌套调用

在调用一个函数的过程中,又调用另一个函数,称为函数的嵌套调用。

C++允许函数多层嵌套调用,只要在函数调用前有函数声明即可。

计算 f(x) = x^3 - 5x^2 + 16x - 80 方程的根,精度e = 1e-6。

#include <iostream>
#include <cmath>
using namespace std;

#define e 1e-10

double f(double x)
{
	return ((x-5.0)*x+16.0)*x-80;
}

double root(double x_start, double x_end)
{
	double x, f_x_start, f_x, f_x_end;
	do{
		f_x_start = f(x_start);
		f_x_end = f(x_end);
		x = (x_start*f_x_end - x_end*f_x_start)/(f_x_end - f_x_start);
		f_x = f(x);
		if(f_x_start*f_x <= 0)
		{
			x_end = x;
		}
		else if(f_x*f_x_end <= 0)
		{
			x_start = x;
		}
		// cout << "x = " << x << ", f(x) = " << f_x << endl;
	}while(fabs(f_x) > e);
	return x;
}

int main()
{
	double x_start, x_end, x_root;
	do{
		cin >> x_start >> x_end;
	}while(x_start >= x_end || f(x_start)*f(x_end) >= 0);
	x_root = root(x_start, x_end);
	cout << "x_start = " << x_start << endl;
	cout << "x_end = " << x_end << endl;
	cout << "x_root = " << x_root << endl;
	return 0;
} 

二、函数的递归调用

函数直接或间接调用自己称为递归调用。

汉诺塔问题

#include <iostream>
using namespace std;

int Hanoi(int n, char s, char b, char d, int counter=0)
{
	if(n == 1)
	{
		counter += 1;
		cout << counter << ":" << s << "->" << d << endl;
	}
	else
	{
		counter = Hanoi(n-1, s, d, b, counter);
		counter += 1;
		cout << counter << ":" << s << "->" << d << endl;
		counter = Hanoi(n-1, b, s, d, counter);
	}
	return counter;
} 

int main()
{
	int n;
	char a = 'A', b = 'B', c = 'C';
	do{
		cin >> n;
	}while(n<=0);
	Hanoi(n, a, b, c);
	return 0;
} 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值