第二节 图像处理

本文详细介绍了OpenCV库在图像处理中的应用,包括图像的二值化处理(阈值、类型),平滑滤波(均值、高斯、中值),形态学操作(腐蚀、膨胀、开闭运算),边缘检测(梯度、Canny算法),以及图像金字塔和轮廓提取等技术。
摘要由CSDN通过智能技术生成

图像阈值

ret, dst = cv2.threshold(src, thresh, maxval, type)
  • src: 输入图,只能输入单通道图像,通常来说为灰度图。
  • dst: 输出图。
  • thresh: 阈值,通常127
  • maxval:当像素值超过了阈值(或者小于阈值,根据type来决定),所赋予的值。通常255。
  • type:二值化操作的类型,包含以下5种类型:
  • cv2.THRESH_BINARY 超过阈值部分取maxval(最大值),否则取0
  • cv2.THRESH_BINARY_INV THRESH_BINARY的反转
  • cv2.THRESH_TRUNC 大于阈值部分设为阈值,否则不变
  • cv2.THRESH_TOZERO 大于阈值部分不改变,否则设为0
  • cv2.THRESH_TOZERO_INV THRESH_TOZERO的反转
ret, thresh1 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY)		#ret表示域值;thresh表示返回图
ret, thresh2 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY_INV)
ret, thresh3 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TRUNC)
ret, thresh4 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO)
ret, thresh5 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO_INV)

titles = ['Original Image', 'BINARY', 'BINARY_INV', 'TRUNC', 'TOZERO', 'TOZERO_INV']
images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]

for i in range(6):
    plt.subplot(2, 3, i + 1), plt.imshow(images[i], 'gray')
    plt.title(titles[i])
    plt.xticks([]), plt.yticks([])
plt.show()

在这里插入图片描述

图像平滑

去掉噪音点

img = cv2.imread('lenaNoise.png')

cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

# 均值滤波
# 简单的平均卷积操作
blur = cv2.blur(img, (3, 3))	#每3*3矩阵进行计算,通常奇数

cv2.imshow('blur', blur)
cv2.waitKey(0)
cv2.destroyAllWindows()

# 方框滤波
# 基本和均值一样,可以选择归一化
box = cv2.boxFilter(img,-1,(3,3), normalize=True) 	#-1表示得到结果颜色通道一致;normalize=True表示进行归一化,和均值滤波结果相同

cv2.imshow('box', box)
cv2.waitKey(0)
cv2.destroyAllWindows()

# 方框滤波
# 基本和均值一样,可以选择归一化,容易越界
box = cv2.boxFilter(img,-1,(3,3), normalize=False)  	#缺少了归一化操作
#如果越界,所有越界值全取255

cv2.imshow('box', box)
cv2.waitKey(0)
cv2.destroyAllWindows()

# 高斯滤波
# 高斯模糊的卷积核里的数值是满足高斯分布,相当于更重视中间的
aussian = cv2.GaussianBlur(img, (5, 5), 1)  	#离自己越近的,发挥的效果越强。

cv2.imshow('aussian', aussian)
cv2.waitKey(0)
cv2.destroyAllWindows()

# 中值滤波
# 相当于用中值代替
median = cv2.medianBlur(img, 5)  # 中值滤波
#中间值当作平滑处理的结果

cv2.imshow('median', median)
cv2.waitKey(0)
cv2.destroyAllWindows()


# 展示所有的
res = np.hstack((blur,aussian,median))	#vstack:竖着展示,hstack:横着展示
#print (res)
cv2.imshow('median vs average', res)
cv2.waitKey(0)
cv2.destroyAllWindows()

形态学-腐蚀操作

去掉图片上的刺

img = cv2.imread('dige.png')

cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

kernel = np.ones((3,3),np.uint8) 	# 腐蚀核大小
erosion = cv2.erode(img,kernel,iterations = 1)	#迭代一次

cv2.imshow('erosion', erosion)
cv2.waitKey(0)
cv2.destroyAllWindows()

形态学-膨胀操作

#先腐蚀
kernel = np.ones((3,3),np.uint8) 
dige_erosion = cv2.erode(img,kernel,iterations = 1)

cv2.imshow('erosion', erosion)
cv2.waitKey(0)
cv2.destroyAllWindows()

kernel = np.ones((3,3),np.uint8) 
dige_dilate = cv2.dilate(dige_erosion,kernel,iterations = 1)

#膨胀,线条变粗了
cv2.imshow('dilate', dige_dilate)
cv2.waitKey(0)
cv2.destroyAllWindows()

开运算与闭运算

# 开:先腐蚀,再膨胀
img = cv2.imread('dige.png')

kernel = np.ones((5,5),np.uint8) 
opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)

cv2.imshow('opening', opening)
cv2.waitKey(0)
cv2.destroyAllWindows()
# 闭:先膨胀,再腐蚀
img = cv2.imread('dige.png')

kernel = np.ones((5,5),np.uint8) 
closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)

cv2.imshow('closing', closing)
cv2.waitKey(0)
cv2.destroyAllWindows()

梯度运算

# 梯度=膨胀-腐蚀,得到边缘图像

kernel = np.ones((7,7),np.uint8) 
dilate = cv2.dilate(pie,kernel,iterations = 5)	#膨胀
erosion = cv2.erode(pie,kernel,iterations = 5)	#腐蚀

res = np.hstack((dilate,erosion))

cv2.imshow('res', res)
cv2.waitKey(0)
cv2.destroyAllWindows()
pie = cv2.imread('pie.png')
#梯度运算
gradient = cv2.morphologyEx(pie, cv2.MORPH_GRADIENT, kernel)

cv2.imshow('gradient', gradient)
cv2.waitKey(0)
cv2.destroyAllWindows()

礼帽与黑帽

礼帽 = 原始输入-开运算结果(带刺-不带刺=刺)
黑帽 = 闭运算-原始输入(刺挺多的-带刺的=字的轮廓)

#礼帽
img = cv2.imread('dige.png')
tophat = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, kernel)
cv2.imshow('tophat', tophat)
cv2.waitKey(0)
cv2.destroyAllWindows()
#黑帽
img = cv2.imread('dige.png')
blackhat  = cv2.morphologyEx(img,cv2.MORPH_BLACKHAT, kernel)
cv2.imshow('blackhat ', blackhat )
cv2.waitKey(0)
cv2.destroyAllWindows()

图像梯度-Sobel算子

计算梯度,找出哪些地方有梯度
在这里插入图片描述

img = cv2.imread('pie.png',cv2.IMREAD_GRAYSCALE)
cv2.imshow("img",img)
cv2.waitKey()
cv2.destroyAllWindows()
dst = cv2.Sobel(src, ddepth, dx, dy, ksize)
  • ddepth:图像的深度,一般-1
  • dx和dy分别表示水平和竖直方向
  • ksize是Sobel算子的大小
def cv_show(img,name):
    cv2.imshow(name,img)
    cv2.waitKey()
    cv2.destroyAllWindows()
    
sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)
#cv2.CV_64F:保留负数(后面会转为绝对值)
cv_show(sobelx,'sobelx')

白到黑是正数,黑到白就是负数了,所有的负数会被截断成0,所以要取绝对值

sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)
sobelx = cv2.convertScaleAbs(sobelx)	#取绝对值
cv_show(sobelx,'sobelx')
sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3)	#y方向
sobely = cv2.convertScaleAbs(sobely)  
cv_show(sobely,'sobely')

分别计算x和y,再求和

sobelxy = cv2.addWeighted(sobelx,0.5,sobely,0.5,0)	#最后一项默认为0
cv_show(sobelxy,'sobelxy')

不建议直接计算:

sobelxy=cv2.Sobel(img,cv2.CV_64F,1,1,ksize=3)
sobelxy = cv2.convertScaleAbs(sobelxy) 
cv_show(sobelxy,'sobelxy')

图像梯度-Scharr算子

在这里插入图片描述

图像梯度-laplacian算子

对噪音点敏感,通常结合其他算子
在这里插入图片描述

#不同算子的差异
img = cv2.imread('lena.jpg',cv2.IMREAD_GRAYSCALE)
sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)
sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3)
sobelx = cv2.convertScaleAbs(sobelx)   
sobely = cv2.convertScaleAbs(sobely)  
sobelxy =  cv2.addWeighted(sobelx,0.5,sobely,0.5,0)  

scharrx = cv2.Scharr(img,cv2.CV_64F,1,0)
scharry = cv2.Scharr(img,cv2.CV_64F,0,1)
scharrx = cv2.convertScaleAbs(scharrx)   
scharry = cv2.convertScaleAbs(scharry)  
scharrxy =  cv2.addWeighted(scharrx,0.5,scharry,0.5,0) 

laplacian = cv2.Laplacian(img,cv2.CV_64F)
laplacian = cv2.convertScaleAbs(laplacian)   

res = np.hstack((sobelxy,scharrxy,laplacian))
cv_show(res,'res')

Canny边缘检测

  1. 使用高斯滤波器,以平滑图像,滤除噪声。
  2. 计算图像中每个像素点的梯度强度和方向。
  3. 应用非极大值(Non-Maximum Suppression)抑制,以消除边缘检测带来的杂散响应。
  4. 应用双阈值(Double-Threshold)检测来确定真实的和潜在的边缘。
  5. 通过抑制孤立的弱边缘最终完成边缘检测。

1:高斯滤波器

在这里插入图片描述

2:梯度和方向

在这里插入图片描述

3:非极大值抑制

看他的梯度值是否是最大的,如果不是就要抑制掉。
在这里插入图片描述
在这里插入图片描述

4:双阈值检测

在这里插入图片描述

Canny边缘检测代码

img=cv2.imread("lena.jpg",cv2.IMREAD_GRAYSCALE)

v1=cv2.Canny(img,80,150)
v2=cv2.Canny(img,50,100)

res = np.hstack((v1,v2))
cv_show(res,'res')

图像金字塔

在这里插入图片描述

高斯金字塔:向下采样方法(缩小)

在这里插入图片描述

高斯金字塔:向上采样方法(放大)

在这里插入图片描述

img=cv2.imread("AM.png")
cv_show(img,'img')
print (img.shape)	#(442, 340, 3)
up=cv2.pyrUp(img)	#向上采样,将图像放大
cv_show(up,'up')
print (up.shape)	#(884, 680, 3)
down=cv2.pyrDown(img)	#下采样,,将图像缩小
cv_show(down,'down')
print (down.shape)	#(221, 170, 3)
#对上采样结果再上采样
up2=cv2.pyrUp(up)
cv_show(up2,'up2')
print (up2.shape)	#(1768, 1360, 3)
#先上采样后下采样
up=cv2.pyrUp(img)
up_down=cv2.pyrDown(up)
cv_show(up_down,'up_down')
cv_show(np.hstack((img,up_down)),'up_down')		#结果对比,先上采样后下采样会变模糊

拉普拉斯金字塔

在这里插入图片描述

down=cv2.pyrDown(img)
down_up=cv2.pyrUp(down)
l_1=img-down_up
cv_show(l_1,'l_1')

图像轮廓

轮廓是一个整体,边缘零零散散。

cv2.findContours(img,mode,method)
mode:轮廓检索模式

  • RETR_EXTERNAL :只检索最外面的轮廓;
  • RETR_LIST:检索所有的轮廓,并将其保存到一条链表当中;
  • RETR_CCOMP:检索所有的轮廓,并将他们组织为两层:顶层是各部分的外部边界,第二层是空洞的边界;
  • RETR_TREE:检索所有的轮廓,并重构嵌套轮廓的整个层次; (常用)

method:轮廓逼近方法

  • CHAIN_APPROX_NONE:以Freeman链码的方式输出轮廓,所有其他方法输出多边形(顶点的序列)。
  • CHAIN_APPROX_SIMPLE:压缩水平的、垂直的和斜的部分,也就是,函数只保留他们的终点部分。
    在这里插入图片描述
    为了更高的准确率,使用二值图像。
img = cv2.imread('contours.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)	#转灰度图
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)		#对图像数据进行二值处理,大于127的黑,小于127的白
cv_show(thresh,'thresh')
binary, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
#binary:二值结果
#contours:轮廓信息
#hierarchy:层级信息

绘制轮廓

cv_show(img,'img')
#传入绘制图像,轮廓,轮廓索引,颜色模式,线条厚度
# 注意需要copy,要不原图会变。。。
draw_img = img.copy()
res = cv2.drawContours(draw_img, contours, -1, (0, 0, 255), 2)		#-1表示画所有轮廓,其他数字表示第几个轮廓;(0, 0, 255)是BGR格式;2表示线条宽度
cv_show(res,'res')
draw_img = img.copy()
res = cv2.drawContours(draw_img, contours, 0, (0, 0, 255), 2)	#展示第一个轮廓
cv_show(res,'res')

轮廓特征

cnt = contours[0]
#面积
cv2.contourArea(cnt)	#8500.5
#周长,True表示闭合的
cv2.arcLength(cnt,True)		#437.9482651948929

轮廓近似

将轮廓规整一些

在这里插入图片描述

img = cv2.imread('contours2.png')

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
binary, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt = contours[0]

draw_img = img.copy()
res = cv2.drawContours(draw_img, [cnt], -1, (0, 0, 255), 2)
cv_show(res,'res')
epsilon = 0.15*cv2.arcLength(cnt,True) 	#值越大,近似程度越大
approx = cv2.approxPolyDP(cnt,epsilon,True)	#轮廓近似

draw_img = img.copy()	#复制展示
res = cv2.drawContours(draw_img, [approx], -1, (0, 0, 255), 2)
cv_show(res,'res')

边界矩形

img = cv2.imread('contours.png')

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
binary, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt = contours[0]

x,y,w,h = cv2.boundingRect(cnt)
img = cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
cv_show(img,'img')
area = cv2.contourArea(cnt)
x, y, w, h = cv2.boundingRect(cnt)
rect_area = w * h
extent = float(area) / rect_area
print ('轮廓面积与边界矩形比',extent)		#0.5154317244724715

外接圆

(x,y),radius = cv2.minEnclosingCircle(cnt) 
center = (int(x),int(y)) 
radius = int(radius) 
img = cv2.circle(img,center,radius,(0,255,0),2)
cv_show(img,'img')

模板匹配

模板匹配和卷积原理很像,模板在原图像上从原点开始滑动,计算模板与(图像被模板覆盖的地方)的差别程度,这个差别程度的计算方法在opencv里有6种,然后将每次计算的结果放入一个矩阵里,作为结果输出。假如原图形是AxB大小,而模板是axb大小,则输出结果的矩阵是(A-a+1)x(B-b+1)

# 模板匹配
img = cv2.imread('lena.jpg', 0)
template = cv2.imread('face.jpg', 0)
h, w = template.shape[:2] 
img.shape	#(263, 263)

template.shape	#(110, 85)
  • TM_SQDIFF:计算平方不同,计算出来的值越小,越相关
  • TM_CCORR:计算相关性,计算出来的值越大,越相关
  • TM_CCOEFF:计算相关系数,计算出来的值越大,越相关
  • TM_SQDIFF_NORMED:计算归一化平方不同,计算出来的值越接近0,越相关
  • TM_CCORR_NORMED:计算归一化相关性,计算出来的值越接近1,越相关
  • TM_CCOEFF_NORMED:计算归一化相关系数,计算出来的值越接近1,越相关

公式

methods = ['cv2.TM_CCOEFF', 'cv2.TM_CCOEFF_NORMED', 'cv2.TM_CCORR',
           'cv2.TM_CCORR_NORMED', 'cv2.TM_SQDIFF', 'cv2.TM_SQDIFF_NORMED']
res = cv2.matchTemplate(img, template, cv2.TM_SQDIFF)
res.shape		#(154, 179)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
min_val	#39168.0
max_val	#74403584.
min_loc	#(107, 89)
max_loc	#(159, 62)
for meth in methods:
    img2 = img.copy()

    # 匹配方法的真值
    method = eval(meth)
    print (method)
    res = cv2.matchTemplate(img, template, method)
    min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)

    # 如果是平方差匹配TM_SQDIFF或归一化平方差匹配TM_SQDIFF_NORMED,取最小值
    if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:
        top_left = min_loc
    else:
        top_left = max_loc
    bottom_right = (top_left[0] + w, top_left[1] + h)

    # 画矩形
    cv2.rectangle(img2, top_left, bottom_right, 255, 2)

    plt.subplot(121), plt.imshow(res, cmap='gray')
    plt.xticks([]), plt.yticks([])  # 隐藏坐标轴
    plt.subplot(122), plt.imshow(img2, cmap='gray')
    plt.xticks([]), plt.yticks([])
    plt.suptitle(meth)
    plt.show()

匹配多个对象

img_rgb = cv2.imread('mario.jpg')
img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
template = cv2.imread('mario_coin.jpg', 0)
h, w = template.shape[:2]

res = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED)
threshold = 0.8
# 取匹配程度大于%80的坐标
loc = np.where(res >= threshold)
for pt in zip(*loc[::-1]):  # *号表示可选参数
    bottom_right = (pt[0] + w, pt[1] + h)
    cv2.rectangle(img_rgb, pt, bottom_right, (0, 0, 255), 2)

cv2.imshow('img_rgb', img_rgb)
cv2.waitKey(0)

输出:-1

直方图

在这里插入图片描述
cv2.calcHist(images,channels,mask,histSize,ranges)

  • images: 原图像图像格式为 uint8 或 float32。当传入函数时应 用中括号 [] 括来例如[img]
  • channels: 同样用中括号括来它会告函数我们统幅图 像的直方图。如果入图像是灰度图它的值就是 [0]如果是彩色图像的传入的参数可以是 [0][1][2] 它们分别对应着 BGR。
  • mask: 掩模图像。统整幅图像的直方图就把它为 None。但是如 果你想统图像某一分的直方图的你就制作一个掩模图像并 使用它。
  • histSize:BIN 的数目。也应用中括号括来
  • ranges: 像素值范围常为 [0256]
img = cv2.imread('cat.jpg',0) #0表示灰度图
hist = cv2.calcHist([img],[0],None,[256],[0,256])
hist.shape	#(256, 1)
plt.hist(img.ravel(),256); 
plt.show()

在这里插入图片描述

img = cv2.imread('cat.jpg') 
color = ('b','g','r')
for i,col in enumerate(color): 
    histr = cv2.calcHist([img],[i],None,[256],[0,256]) 
    plt.plot(histr,color = col) 
    plt.xlim([0,256]) 

在这里插入图片描述
mask操作

# 创建mast
mask = np.zeros(img.shape[:2], np.uint8)
print (mask.shape)
mask[100:300, 100:400] = 255
cv_show(mask,'mask')	#(414, 500)
img = cv2.imread('cat.jpg', 0)
cv_show(img,'img')
masked_img = cv2.bitwise_and(img, img, mask=mask)#与操作
cv_show(masked_img,'masked_img')
hist_full = cv2.calcHist([img], [0], None, [256], [0, 256])
hist_mask = cv2.calcHist([img], [0], mask, [256], [0, 256])
plt.subplot(221), plt.imshow(img, 'gray')
plt.subplot(222), plt.imshow(mask, 'gray')
plt.subplot(223), plt.imshow(masked_img, 'gray')
plt.subplot(224), plt.plot(hist_full), plt.plot(hist_mask)
plt.xlim([0, 256])
plt.show()

在这里插入图片描述

直方图均衡化¶

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

img = cv2.imread('clahe.jpg',0) #0表示灰度图 #clahe
plt.hist(img.ravel(),256); 
plt.show()

在这里插入图片描述

equ = cv2.equalizeHist(img) 
plt.hist(equ.ravel(),256)
plt.show()

在这里插入图片描述

res = np.hstack((img,equ))
cv_show(res,'res')

自适应直方图均衡化

clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8)) 
res_clahe = clahe.apply(img)
res = np.hstack((img,equ,res_clahe))
cv_show(res,'res')

傅里叶变换

我们生活在时间的世界中,早上7:00起来吃早饭,8:00去挤地铁,9:00开始上班。。。以时间为参照就是时域分析。
但是在频域中一切都是静止的!
https://zhuanlan.zhihu.com/p/19763358

傅里叶变换的作用

  • 高频:变化剧烈的灰
  • 度分量,例如边界 低频:变化缓慢的灰度分量,例如一片大海

滤波

  • 低通滤波器:只保留低频,会使得图像模糊
  • 高通滤波器:只保留高频,会使得图像细节增强

opencv中主要就是cv2.dft()和cv2.idft():逆变换,输入图像需要先转换成np.float32 格式。
得到的结果中频率为0的部分会在左上角,通常要转换到中心位置,可以通过shift变换来实现。
cv2.dft()返回的结果是双通道的(实部,虚部),通常还需要转换成图像格式才能展示(0,255)。

import numpy as np
import cv2
from matplotlib import pyplot as plt

img = cv2.imread('lena.jpg',0)

img_float32 = np.float32(img)

dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)	#讲低频值转换到中间位置
# 得到灰度图能表示的形式
magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:,:,0],dft_shift[:,:,1]))

plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(magnitude_spectrum, cmap = 'gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()

在这里插入图片描述

import numpy as np
import cv2
from matplotlib import pyplot as plt

img = cv2.imread('lena.jpg',0)

img_float32 = np.float32(img)

dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)

rows, cols = img.shape
crow, ccol = int(rows/2) , int(cols/2)     # 中心位置

# 低通滤波
mask = np.zeros((rows, cols, 2), np.uint8)
mask[crow-30:crow+30, ccol-30:ccol+30] = 1

# IDFT
fshift = dft_shift*mask
f_ishift = np.fft.ifftshift(fshift)		#还回去
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1])

plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(img_back, cmap = 'gray')
plt.title('Result'), plt.xticks([]), plt.yticks([])

plt.show()                

在这里插入图片描述

img = cv2.imread('lena.jpg',0)

img_float32 = np.float32(img)

dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)

rows, cols = img.shape
crow, ccol = int(rows/2) , int(cols/2)     # 中心位置

# 高通滤波
mask = np.ones((rows, cols, 2), np.uint8)
mask[crow-30:crow+30, ccol-30:ccol+30] = 0

# IDFT
fshift = dft_shift*mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1])

plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(img_back, cmap = 'gray')
plt.title('Result'), plt.xticks([]), plt.yticks([])

plt.show()   

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

东北的雪儿很美

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值