研一上第三周(9.25-10.1)周报
[1]赵冬冬. 基于深度学习的动车组轴承状态评估与剩余使用寿命预测方法研究[D].北京交通大学,2022.DOI:10.26944/d.cnki.gbfju.2022.000184.
这周学习了一些经典的异常检测算法的思想,没有深究里面的数学公式,打算用到的时候再学。找了一篇轴承状态评估和剩余寿命预测的博士论文,读的过程中遇到了一些不懂的专业名词,公式理解起来比较困难,不知道有没有必要搞懂,目前我是先跳过了公式的理解,搞明白这个公式有什么用,就往下看了。
这篇文章引入了一种新的混合多工况数据融合思想,假定研究轴承处于工况 1,该工况运行下的轴承只有少量全寿程退化数据,而相同设备下其他工况的轴承运行退化数据较为丰富,因此通过将工况 1 退化数据与其他工况轴承退化数据融合。