研一上第三周(9.25-10.1)周报

研一上第三周(9.25-10.1)周报

[1]赵冬冬. 基于深度学习的动车组轴承状态评估与剩余使用寿命预测方法研究[D].北京交通大学,2022.DOI:10.26944/d.cnki.gbfju.2022.000184.

基于深度学习的动车组轴承状态评估与剩余使用寿命预测方法研究

这周学习了一些经典的异常检测算法的思想,没有深究里面的数学公式,打算用到的时候再学。找了一篇轴承状态评估和剩余寿命预测的博士论文,读的过程中遇到了一些不懂的专业名词,公式理解起来比较困难,不知道有没有必要搞懂,目前我是先跳过了公式的理解,搞明白这个公式有什么用,就往下看了。

这篇文章引入了一种新的混合多工况数据融合思想,假定研究轴承处于工况 1,该工况运行下的轴承只有少量全寿程退化数据,而相同设备下其他工况的轴承运行退化数据较为丰富,因此通过将工况 1 退化数据与其他工况轴承退化数据融合。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

懒羊羊吃辣条

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>