5-交通可达性计算原理与基础数据准备

一、达到效果和目的:

  1. 可以分析其它地方通过不同道路到达目标点的时间
  2. 有点类似于水文当中的推求地表径流而使用等流线的感觉
  3. 分析到达某地的时间

二、使用工具及原理:

**成本距离工具:**确定各像元距最近源位置的最短加权距离(也叫累积行程成本)
**欧氏工具:**计算空间的实际距离

原理解析:
基础数据录入——数据处理——Arcgis计算——结果校核
基础数据录入:要素数据、矢量化路网数据、地图数据
【用OSM地图提供矢量数据下载
数据处理:去除高速公路等不能平交的道路、山川湖泊等不可地形或极难同行区域(生成时间成本栅格)
【高速公路、铁路、山水湖泊及诸多限制要素
通过成本工具,带入数据计算
**结果校核:**通过百度地图进行
在这里插入图片描述
在这里插入图片描述

三、基于栅格数据的交通可达性计算

①大致步骤

选取——重分类——数据计算——可视化表达——结果校核验证
在这里插入图片描述

②基础资料准备(OSM)

OSM的:🔗
将OSM的数据通过FME软件进行转换
在这里插入图片描述

! 注意:保存路径最好没有数字!!
读取结束后是这样子:
在这里插入图片描述
在arcgis中打开文件夹,会有很多的shp文件,就是由此生成的。
在这里插入图片描述

③arcgis中操作

1. 打开shp文件

在之前准备好的,也就是用OSM数据转成的Shp格式数据打开,选择其中的道路(也就是 highway_line.shp)

2.筛选目标道路

选择根据按属性选择选择自己要分析的道路级别,然后导出数据,新建为一个shp文件

3. 转换坐标系(地理——投影)

注意要转换坐标系,因为考虑到后续剖分的栅格是以像素为单位,在投影和变换下的投影工具箱中:原WGS84——>现UTM1984 49N
在这里插入图片描述

4. 导出栅格文件

因为计算时是以一个个小的像素(正方形为计算单元),所以要转为栅格。
要素转栅格:把路都变成?m,此时要素都被分割成为像素元,路宽已经变成了以?m为最小单元的了。因此有必要删除太窄的路,或者是不要把?的值设置太大
在这里插入图片描述

5. 更改栅格里对应的值

Special analysis下选择重分类
注意因为Arcgis里不能够输入小数,所以要提前放大倍数
在这里插入图片描述

6.扩大为整数,计算好时间

生成时间成本网格,里边的值要计算
在这里插入图片描述

7.利用Arcgis的成本距离进行分析

成本距离工具
在这里插入图片描述
在这里插入图片描述
启始成本分析,有不同的选项进行不同的操作(有解释)
在这里插入图片描述

8. 优化成图(手动调整分类分级)

解决分类分级的问题:
在属性的已分类下,选择 分类
在这里插入图片描述
我选择按照分位数进行分类,也就是在这个操作中可以把内容按照要求进行分类。

9.还原真实时间成本

由于之前为了解决Arcgis里没办法输入小数(在 重分类中,保证时间成本是整数,放大了时间成本的倍数),因此采用在arctool中的地图代数里,栅格计算器中操作在这里插入图片描述
在这里插入图片描述

上边报错,1个原因是没有加后缀 .tif,另一个是因为保存路径的问题(我是通过这个解决的,把它保存在和咱们软件xmd相同的同一个文件夹下)。老师提出的解决方案是在这里插入图片描述
在这里插入图片描述

10.美观图(涉及色带丢失处理)

但是不幸的是,我在操作过程中,arcgis的色带只有黑白色,于是参考网上资料。在自定义-样式管理-样式引用,全部勾选
在这里插入图片描述
成功✌( •̀ ω •́ )y
在这里插入图片描述

在这里插入图片描述

11.校核和检验

可以利用百度地图,进行道路选择,来校对时间的准确性

注意:

  • 路径不要设置为含数字的!!!!,不然在投影啊,或者是FME导入文件时候就会报错!

四、实时交通态势的分析

1.将两个要素合并

字段计算器(使用上篇得到的交通态势shp文件),新增分类一列
分类=highway&status_des

2.要素转栅格

在此之前要进行坐标系的转换,否则:
if没转坐标系的话

  • 转栅格对保存路径的要求很高
  • 字段一定要选 分类

3.生成的shp文件,选择 分类

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
… bugs 太多了。。。。
基本思想就是

  1. 确定道路的行驶时间有两种方法,一种是用获取的状态数据,依据表中的数据:几级干道+拥堵状态,再根据标准,进行速度赋值(用到再分类,对分类进行赋值);另一种是对于生成的栅格化道路,依据到达该点的距离和时间,利用时间成本工具,进行计算分析。
  2. 最后得到的是道路上可以分析拥堵情况,在面积上可以计算到达目标点的时间(色块)

城市大数据的开发展望

分析逻辑和基础
开放数据形式、什么叫API,API数据的获取(数据接口)

### 使用 ArcGIS 进行可达性分析的方法 #### 准备工作 在开始进行可达性分析之前,需准备好必要的输入数据。这些数据通常包括路网数据和兴趣点(POI),如公交站点、景点或其他重要位置的数据。对于路网数据的获取方式,可以从开源平台下载并处理成适合使用的格式[^2]。 #### 创建网络数据集 要执行服务区分析或任何类型的路径规划任务,首先需要创建一个网络数据集。这可以通过加载已有的道路网络形状文件(SHP),并通过ArcCatalog中的工具将其转换为支持复杂查询的网络数据模型。此过程涉及定义转弯规则、障碍物以及设置不同的行驶条件等参数。 #### 执行服务区分析 一旦有了有效的网络数据集,就可以利用它来进行服务区分析了。该功能允许指定一系列设施的位置,并确定从每个地点出发能够覆盖多大范围内的区域——即所谓的服务半径。用户可以根据实际需求调整时间/距离阈值来模拟不同情况下的可达效果。 #### 计算具体指标 针对特定应用场景比如旅游景点评估,还可以进一步细化计算方法。例如,采用公式 \(A_i=\sum_{j}^{n}\frac{M_j}{T_{ij}}\) 来衡量某一点\(i\)相对于其他多个目标节点\(j\)之间的综合可达水平,其中\(T_{ij}\)表示两者的最短行程耗时而\(M_j\)则是目的地的重要性评分,默认情况下取1表明同等对待所有终点[^3]。 #### 可视化结果 最后一步是对所得数据分析成果加以呈现。借助于ArcMap/ArcPro软件内置的地图绘制能力,可以直观地显示出哪些地区更容易接近某些资源和服务,从而帮助决策者识别潜在的发展机遇或是改进现有布局方案中存在的不足之处。 ```python import arcpy # 设置环境变量 arcpy.env.workspace = "path/to/workspace" # 加载网络数据集 network_dataset = r"path\to\networkDataset.nd" service_area_layer = "ServiceAreaLayer" # 定义服务区分析参数 from_location = "Facilities" impedance_attribute = "TravelTime" # 或 Distance default_breaks = "5;10;15" # 时间单位分钟或距离单位公里 # 创建服务区图层对象 arcpy.na.MakeServiceAreaAnalysis(service_area_layer, network_dataset) # 获取服务区求解器属性并配置其选项 sa_solver_properties = arcpy.na.GetSolverProperties(service_area_layer) sa_solver_properties.setImpedanceAttribute(impedance_attribute) sa_solver_properties.setDefaultBreaks(default_breaks) # 添加起点要素类至服务区图层 facilities_sublayer_name = sa_solver_properties.getSubLayerNames()[0] facilities_feature_class = r"path\to\fcltyFeatureClass.shp" arcpy.management.AddLocations( service_area_layer, facilities_sublayer_name, facilities_feature_class ) # 解决服务区问题 arcpy.na.Solve(service_area_layer) print("服务区分析完成.") ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

美滋滋(你猜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值