最优传输-离散

最优传输研究了两个分布之间的几何度量,涉及离散测度和映射关系。Monge问题关注点云间的映射,而Kantorovich问题通过耦合矩阵解决非唯一映射问题,形成了线性规划。文章介绍了Wasserstein距离、质心定义及应用场景,如多标签学习、WGAN和zero-shot learning。并探讨了如何计算最优传输,包括熵正则化、投影问题和线性规划的对偶问题。
摘要由CSDN通过智能技术生成

参考:
1.运筹千里纵横论坛|王祥丰:计算最优传输及其应用浅谈
2.最优传输的理论与计算系列讲座之二:Monge-Kantorovich理论

最优传输研究两个分布之间几何的度量,
概率向量a(n维),每个维度上ai>=0,和为1
离散测度:跟概率向量a有关系,和n个点x1…xn有关。
在这里插入图片描述
对于离散测度的monge问题,考虑两个离散测度之间的关系,对一个离散测度 a l p h a alpha alpha和一个 b e t a beta beta,希望找到一个映射T,由n维映射扫m维的向量(空间).建立一个映射T#把离散测度 a l p h a alpha alpha映射到离散测度 b e t a beta beta,对monge不一定能匹配很好。
在这里插入图片描述
monge缺点:
1.希望两个点云是相同大小
2.是组合或非凸优化问题
K松弛
核心:之前M不能把ai拆分,K把任何一个点xi对应的质量ai进行分解,分别传输到不同的yj上。
对应的映射转化为一个耦合(couping)矩阵P代替松弛后的关系
在这里插入图片描述
对P定义:是nm维,把n维概率向量传输到m维概率向量上,满足所有元素>=0,P乘上m维单位向量要和 a l p h a alpha alpha对应的概率向量要相同,同时 P T P^T PT乘上n维全是1的向量要和 b e t a beta be

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值