最优传输问题

Transport Polytope、可解释为联合概率的集合

使用 ⟨ ⋅ , ⋅ ⟩ \lang \cdot , \cdot \rang ,代表Frobenius点积。对于 ∑ d : = { x ∈ R + d : x T 1 d = 1 } \sum_d:=\{x\in\R^d_+:x^T1_d=1\} d:={xR+d:xT1d=1}中的两个概率向量 r r r c c c,将 U ( r , c ) U(r,c) U(r,c)记为 r r r c c c的transport polytope,称为 d × d d\times d d×d矩阵的polyhedral集合, 1 d 1_d 1d为值全为1的d维向量
U ( r , c ) : = { P ∈ R + d × d ∣ P 1 d = r , P T 1 d = c } U(r,c):=\{P\in \R^{d\times d}_+|P1_d=r,P^T1_d=c\} U(r,c):={PR+d×dP1d=r,PT1d=c}.
U ( r , c ) U(r,c) U(r,c)包含所有 d × d d\times d d×d的行和列的和分别 r r r c c c的非负矩阵。 U ( r , c ) U(r,c) U(r,c)的概率解释为:对于X和Y这两个取值为 { 1 , . . . , d } \{1,...,d\} {1,...,d}的多项随机变量,其分布分别为 r r r c c c,集合 U ( r , c ) U(r,c) U(r,c)包含 ( X , Y ) (X,Y) (X,Y)的所有可能的联合概率。实际上,任意矩阵 P ∈ U ( r , c ) P\in U(r,c) PU(r,c) ( X , Y ) (X,Y) (X,Y)的联合概率等价, p ( X = i , Y = j ) = p i j p(X=i,Y=j)=p_{ij} p(X=i,Y=j)=pij。将熵 h h h P , Q ∈ U ( r , c ) P,Q\in U(r,c) P,QU(r,c)的Kullback-Leibler散度和边缘参数 r ∈ ∑ d r\in \sum_d rd记为
在这里插入图片描述

r r r c c c之间的最优传输

给定 d × d d\times d d×d的代价矩阵 M M M,从 r r r映射到 c c c的代价可以用传输矩阵(transport matrix)(或联合概率)量化为 ⟨ P , M ⟩ \lang P, M\rang P,M
d M ( r , c ) : = min ⁡ P ∈ U ( r , c ) ⟨ P , M ⟩ \boxed{d_M(r,c):=\min_{P\in U(r,c)}\lang P,M\rang} dM(r,c):=PU(r,c)minP,M(1)
等式(1)称作给定代价矩阵 M M M时, r r r c c c的最优传输(OT)问题。除其他方法外,使用network simplex(Ahuja et al., 1993, §9)可以得到该问题的最优表 P ∗ P^* P。当M是度量矩阵时,该问题的最优解 d M ( r , c ) d_M(r,c) dM(r,c) r r r c c c的距离(Villani, 2009, §6.1),称为M属于距离矩阵的锥。(Avis, 1980; Brickell et al., 2008)
在这里插入图片描述
在近期提出的算法之中,对于一般的矩阵 M M M,最优解的计算复杂度在最差情况下,范围在 O ( d 3 log ⁡ d ) O(d^3\log d) O(d3logd)之间,实际上也是超立方(Pele and Werman, 2009, §2.1)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值