最优传输中的离散测度

问题

这段时间在了解一些最优传输方面的知识,看博客《最优运输(Optimal Transfort):从理论到填补的应用》,其中的离散测度(Discrete measures)把我给整懵逼了,先把博客的原文列出来吧:

首先,说一下概率向量(或者称为直方图,英文:Histograms, probability vector)的定义: Σ n = d e f . { a ∈ R + n : ∑ i = 1 n a i = 1 } (1) \Sigma_n \xlongequal[]{def.} \left \{ \bm{a} \in \mathbb{R}^{n}_{+} : \sum_{i=1}^{n} \bm{a}_i = 1 \right \} \tag{1} Σndef. {aR+n:i=1nai=1}(1) 上述公式的含义:一个长度为 n n n 的数组,每个元素的值在 [ 0 , 1 ] [0, 1] [0,1] 之间,并且该数组的和为 1 1 1,即表示的是一个概率分布向量。
离散测度:所谓测度就是一个函数,把一个集合中的一些子集(符合上述概率分布向量)对应给一个数。具体公式定义如下: α = ∑ i = 1 n a i δ x i \alpha = \sum_{i=1}^{n} \bm{a}_i\delta_{x_i} α=i=1naiδxi 上述公式含义:以 a i \bm{a}_i ai 为概率和对应位置 x i x_i xi 的狄拉克 δ δ δ 函数值乘积的累加和。

懵逼了吧。那个 a \bm{a} a 好理解,就是个表示概率分布的 n n n 维向量, Σ n \Sigma_n Σn 就是表示所有 n n n 维概率向量的集合。但是这离散测度的概念给得也太突然了,猝不及防,一头雾水。好的!咱就去看一看博客作者看的原文Computational Optimal Transport2.1 Histograms and Measures

We will use interchangeably the terms histogram and probability vector for any element a ∈ Σ n \bm{a} \in \Sigma_n aΣn that belongs to the probability simplex(这玩意儿叫概率单纯形 公式 ( 1 ) 公式 (1) 公式(1) A large part of this review focuses exclusively on the study of the geometry induced by optimal transport on the simplex.
然后是离散测度定义
在这里插入图片描述

瞅了半天,什么 location?什么 Dirac at position x x x?在扯什么?即使能理解 δ x i \delta_{x_i} δxi 是集中在点 x i x_i xi 的单位质量,其值为 1 1 1,那么 α = ∑ i = 1 n a i δ x i = 1 \alpha = \sum_{i=1}^{n} \bm{a}_i\delta_{x_i} = 1 α=i=1naiδxi=1 呀,怎么会描述一个概率分布呢?

于是查阅维基百科,看看到底什么是离散测度,路线是这样的,想要弄明白离散测度的概念,得先弄明白以下概念:测度狄克拉,最后是离散测度

测度

维基百科中这样介绍:In mathematics, the concept of a measure is a generalization and formalization of geometrical measures (length, area, volume) and other common notions, such as mass and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integration theory.
意思就是:测度是长度面积体积以及质量事件概率等概念的推广。那么是如何推广的呢?维基百科中测度的定义是这样的:
在这里插入图片描述
意思就是: X X X 是一个集合, Σ \Sigma Σ X X X 上的 σ \sigma σ 代数(可以理解为 X X X 的幂集),即集合 ( E ∈ Σ ) (E \in \Sigma) (EΣ) X X X 的子集,测度 μ \mu μ 就是一个定义域为 Σ \Sigma Σ值域为一个实数函数,且满足非负性空集为 0 0 0可数可加性

这么来看,这确实是长度、面积、体积以及质量和事件概率等概念的推广,对于直线的长度,这个集合 X X X 就是直线本身, Σ \Sigma Σ 的元素就是任意截取一段;对于圆的面积, X X X 就是圆面, Σ \Sigma Σ 的元素就是圆的任意一部分。。。且满足非负性、空集为 0 0 0、可数可加性。这种扩展,其实就是把几何物体或是随机事件推广到集合上,使集合也有可测的“大小”概念

可测集、可测空间和测度空间

在这里插入图片描述
Σ \Sigma Σ 称为可测集,再加上 X X X 组成可测空间 ( X , Σ ) (X, \Sigma) (X,Σ) ,再加上 μ \mu μ 组成测度空间 ( X , Σ , μ ) (X, \Sigma, \mu) (X,Σ,μ)

从上面来看,probability measure 是一个测度, μ ( X ) = 1 \mu(X) = 1 μ(X)=1,即所有事件的集合的测度为 1 1 1,对应所有事件的概率之和为 1 1 1

到目前为止,想要理解 α = ∑ i = 1 n a i δ x i \alpha = \sum_{i=1}^{n} \bm{a}_i\delta_{x_i} α=i=1naiδxi 为什么是测度,又为什么表示了一个概率分布,还是有点难,即使已经对测度有了初步的认识。

离散测度

那就直接看看维基百科的离散测度页。果然有比较详细的介绍。
在这里插入图片描述
黄色标记部分意思很清楚: s 1 , s 2 , … s_1, s_2, \dots s1,s2, 是一系列数,除去它们后,测度为 μ ( R \ { s 1 , s 2 , …   } ) = 0 \mu(\mathbb{R} \verb|\| \{s_1, s_2, \dots\}) = 0 μ(R\{s1,s2,})=0.

绿色部分还出现了 Dirac delta function δ \delta δ,但这个不是我们要找的 δ x i \delta_{x_i} δxi。蓝色部分才是,给出了 Dirac measure 的定义:有两个序列的实数 s 1 , s 2 , … s_1, s_2, \dots s1,s2, and a 1 , a 2 , … a_1, a_2, \dots a1,a2,,同等长度,其中 a i ∈ [ 0 , ∞ ] a_i \in [0, \infty] ai[0,],若 s i ∈ X s_{i} \in X siX,则 δ s i ( X ) = 1 \delta_{s_i}(X) = 1 δsi(X)=1,否则 δ s i ( X ) = 0 \delta_{s_i}(X) = 0 δsi(X)=0。这不就是指示函数嘛!

好!!!这是我们寻找的, δ s i \delta_{s_i} δsi 不是孤零零的,而是一个函数,是一个测度,它需要输入,我们把输入添上: μ ( X ) = ∑ i a i δ s i ( X ) \mu(X) = \sum_i a_i \delta_{s_i}(X) μ(X)=iaiδsi(X) 那么,此式的意义就明了了:给定一个输入集合 X X X X X X 中所有元素 s i s_i si 对应的 a i a_i ai 加起来,就是 X X X 的测度值,而不在 X X X 中的元素则不计。

例子

现在,有概率向量 a = ( a 1 , a 2 , … , a i , … , a n ) \bm{a} = (a_1, a_2, \dots, a_i, \dots, a_n) a=(a1,a2,,ai,,an),对应的事件为 X = ( x 1 , x 2 , … , x i , … , x n ) X = (x_1, x_2, \dots, x_i, \dots, x_n) X=(x1,x2,,xi,,xn),计算 μ ( X ) = ∑ i a i δ x i ( X ) = ∑ i a i = 1 \mu(X) = \sum_i a_i \delta_{x_i}(X) = \sum_i a_i = 1 μ(X)=iaiδxi(X)=iai=1 因为所有 δ x i ( X ) = 1 \delta_{x_i}(X) = 1 δxi(X)=1
现在,计算 x 2 x_2 x2 发生的概率,则 μ ( { x 2 } ) = ∑ i a i δ x i ( { x 2 } ) = ∑ i = 2 a i = a 2 \mu(\{x_2\}) = \sum_i a_i \delta_{x_i}(\{x_2\}) = \sum_{i=2} a_i = a_2 μ({x2})=iaiδxi({x2})=i=2ai=a2 计算 x 1 x_1 x1 x 2 x_2 x2 发生的概率 μ ( { x 1 , x 2 } ) = ∑ i a i δ x i ( { x 1 , x 2 } ) = ∑ i = 1 , 2 a i = a 1 + a 2 \mu(\{x_1, x_2\}) = \sum_i a_i \delta_{x_i}(\{x_1, x_2\}) = \sum_{i=1,2} a_i = a_1 + a_2 μ({x1,x2})=iaiδxi({x1,x2})=i=1,2ai=a1+a2

回到开始,为什么 α = ∑ i = 1 n a i δ x i \alpha = \sum_{i=1}^{n} \bm{a}_i\delta_{x_i} α=i=1naiδxi 表示一个测度就很明了了,它的输入是一个事件集合输出是这个事件集合的概率。而到最优传输问题中, x i x_i xi 是一个地点 a i a_i ai 是该地点的货物量

  • 8
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值