【在更】基础 | 离散数学笔记

简介

学习资源

离散数学 — 电子科技大学 — 中国大学 MOOC

在现代数学中的地位

集合论 → 现代数学 → 其他学科(包括物理、化学、生物、计算机、经济学)

第一章 集合论基础

1.1 集合的初见

1.1.1 集合定义

描述性定义

  • 一组对象。(simplest way)
  • 任意一组集合 M 包含一组确定的各不相同的对象 m。m 称为集合中的元素,可以来自于我们的感官或内心的想法。(Cantor’s way)
  • 集合是是由指定范围内满足给定条件的所有对象聚集在一起构成,每一个对象称为这个集合的元素。(In Chinese)

公理化集合论

  • 外延公理 + 空集存在公理 + 无序对公理 + 并集公理 + 幂集公理 + 无穷公理 + 替换公理 + 正则公理 + 选择公理。(ZFC 公理化集合论)
  • 外延公理 + 空集存在公理 + 无序对公理 + 并集公理 + 幂集公理 + 无穷公理 + 替换公理 + 正则公理。(ZF 公理化集合论)

例:

  • 所有的英文字母
  • 所有小于 100 的正奇数
  • 中国所有的残疾人
  • 世界上所有的数学家
  • 某植物园的所有植物
  • 天安门广场的所有路灯和树

集合的符号表示
集合的数学符号:
通常情况下

  • 用带或不带下标的大写英文字母表示集合 A , B , C , . . . , A 1 , B 1 , C 1 , . . . A,B,C,...,A_{1},B_{1},C_{1},... A,B,C,...,A1,B1,C1,...
  • 用带或不带下标的小写英文字母表示元素 a , b , c , . . . , a 1 , b 1 , c 1 , . . . a,b,c,...,a_{1},b_{1},c_{1},... a,b,c,...,a1,b1,c1,...

常用集合:

  • 自然数集合 N N N 0 , 1 , 2 , 3 , . . . 0,1,2,3,... 0,1,2,3,...
  • 整数集合 Z Z Z . . . , − 2 , − 1 , 0 , 1 , 2 , . . . ..., -2,-1,0,1,2,... ...,2,1,0,1,2,...
  • 有理数集合 Q Q Q 与实数集合 R R R,等

属于关系

  • a a a 是集合 A A A 中的元素,则称 a a a属于 A A A,记为 a ∈ A a\in A aA
  • a a a 不是集合 A A A 中的元素,则称 a a a不属于 A A A,记为 a ∉ A a\not\in A aA

例:

  • 2 ∈ N 2\in N 2N
  • − 2 ∉ N -2\not\in N 2N
  • 2 3 ∈ Q \frac{2}{3}\in Q 32Q π ∉ Q \pi\not\in Q πQ

1.1.2 集合表示

枚举法

列出集合中的全部元素或者仅列出一部分元素,其余用省略号(…)表示。

例:

  • A = { a , b , c , d } A=\{a,b,c,d\} A={a,b,c,d}
  • B = { 2 , 4 , 6 , 8 , 10 , . . . } B=\{2,4,6,8,10,...\} B={2,4,6,8,10,...}
叙述法

通过刻画集合中元素所具备的某种性质或特性来表示一个集合。
P = { x ∣ P ( x ) } P=\{x|P(x)\} P={xP(x)}

例:

  • A = { x ∣ x  是英文字母中的元音字母 } A=\{x|x\ 是英文字母中的元音字母\} A={xx 是英文字母中的元音字母}
  • B = { x ∣ x ∈ Z , x < 10 } B=\{x|x\in Z,x<10\} B={xxZ,x<10}
  • C = { x ∣ x = 2 k , k ∈ N } C=\{x|x=2k,k\in N\} C={xx=2k,kN}
文氏图

利用平面上的点来做成对集合的图解方法。一般使用平面上的方形或圆形来表示一个集合,而使用平面上的一个小圆点来表示集合的元素。

例:
文氏图

1.1.3 集合基数

定义

  • 集合 A 中的元素个数称为集合的基数(base number),记为 ∣ A ∣ |A| A
  • 若一个集合的基数是有限的,称该集合为有限集(finite set)
  • 若一个集合的基数是无限的,称该集合为无限集(infinite set)

例:

  • A = { a , b , c } ,   ∣ A ∣ = 3 A=\{a,b,c\},\ |A|=3 A={a,b,c}, A=3
  • B = { a , { b , c } } ,   ∣ B ∣ = 2 B=\{a,\{b,c\}\},\ |B|=2 B={a,{b,c}}, B=2 第二个元素是由 b , c b,c b,c 两个元素组成的集合。

1.2 特殊集合与集合间关系

1.2.1 空集

定义
不含任何元素的集合叫做空集(empty set),记作 ∅ \varnothing
空集可以符号化为 ∅ = { x ∣ x ≠ x } \varnothing=\{x|x\neq x\} ={xx=x}

例:

  • A = { x ∣ x ∈ R , x 2 < 0 } A=\{x|x\in R,x^{2}<0\} A={xxR,x2<0},则 A = ∅ A=\varnothing A=
  • ∣ ∅ ∣ = 0 |\varnothing|=0 =0 ∣ { ∅ } ∣ = 1 |\{\varnothing\}|=1 {}=1

注意:空集是绝对唯一的。

1.2.2 全集

定义
针对一个具体范围,我们考虑的所有对象的集合叫做全集(universal set),记作 U U U E E E。在文氏图一般使用方形表示全集。

例:

  • 在立体几何中,全集是由空间的全体点组成的。
  • 在我国人口普查中,全集是由我国所有人组成的。

注意:全集是相对唯一的。

1.2.3 相等关系

元素的基本特性

  • 集合中的元素是无序的。 { 1 , 2 , 3 , 4 } \{1,2,3,4\} {1,2,3,4} { 2 , 3 , 1 , 4 } \{2,3,1,4\} {2,3,1,4} 相同。
  • 集合中的元素是不同的。 { 1 , 2 , 2 , 3 , 4 , 3 , 4 , 2 } \{1,2,2,3,4,3,4,2\} {1,2,2,3,4,3,4,2} { 1 , 2 , 3 , 4 } \{1,2,3,4\} {1,2,3,4} 相同。

引例:
E { x ∣ ( x − 1 ( x − 2 ) ( x − 3 ) = 0 , x ∈ R ) } E\{x|(x-1(x-2)(x-3)=0,x\in R)\} E{x(x1(x2)(x3)=0,xR)} F = { x ∣ x ∈ Z + , x 2 < 12 } F=\{x|x\in Z^{+},x^{2}<12\} F={xxZ+,x2<12},可见 E 和 F 具有相同的元素 { 1 , 2 , 3 } \{1,2,3\} {1,2,3},此时两个集合相等。

外延性原理
两个集合 A A A B B B 相等,当且仅当它们的元素完全相同,记为 A = B A=B A=B,否则 A A A B B B 不相等,记为 A ≠ B A\neq B A=B

1.2.4 包含关系

子集和真子集

引例
A = { B A S I C , P A S C A L , A D A } A=\{BASIC,PASCAL,ADA\} A={BASIC,PASCAL,ADA} B = { A D A , P A S C A L } B=\{ADA,PASCAL\} B={ADA,PASCAL},此时 A A A 中含有 B B B 中所有的元素,这种情况称为 A A A 包含 B B B

定义
A , B A,B A,B 是任意两个集合,

  • 如果 B B B 的每个元素都是 A A A 中的元素,则称 B B B A A A子集,也称做 B B B A A A 包含 A A A 包含 B B B,记作 B ⊆ A B\subseteq A BA,否则记作 B ⊈ A B\not\subseteq A BA
  • 如果 B ⊆ A B\subseteq A BA 并且 B ≠ A B\neq A B=A,则称 B B B A A A真子集,也称做 B B B A A A 真包含 A A A 真包含 B B B,记作 B ⊂ A B\subset A BA,否则记作 B ⊄ A B\not\subset A BA

注意:“ ⊆ \subseteq ” 关系的数学语言描述为: B ⊆ A ⇔ B\subseteq A \Leftrightarrow BA ∀ x \forall x x,如果 x ∈ B x\in B xB,则 x ∈ A x\in A xA

文氏图
文氏图
由子集定义可有:

  • ∅ ⊆ A \varnothing\subseteq A A
  • A ⊆ A A\subseteq A AA

例:
例子

证明集合相等

定理
定理
注意:该定理非常重要,是证明集合相等的一种非常有效的方式。

证明框架:
证明框架

n 元集的子集

例:
例子

推广:
推广

1.2.5 幂集

定义
定义
充分必要条件:
在这里插入图片描述

例:
例子

说明:
说明

1.3 集合的运算

1.3.1 并运算

并集
并集
文氏图
文氏图

例:
例子

1.3.2 交运算

交集
定义
文氏图
文氏图

例:
例子

1.3.3 补运算

补集
定义
文氏图
文氏图

例:
例子

1.3.4 差运算

差集
定义
文氏图
文氏图

例:
例子

1.3.5 对称差运算

对称差集
定义
文氏图
文氏图

例:
例子

1.3.6 运算扩展

并集和交集的扩展
n 个集合的并集:
n 个集合的并集
n 个集合的交集:
n 个集合的交集

例:
例子

1.4 集合的运算定理

1.4.1 运算定律

定理
定理

1.4.2 形象理解

基于文氏图的形象理解(以定理 6 第 2 条为例)
文氏图

1.4.3 证明方法

回顾证明方法
回顾证明方法
证明框架
证明框架

例:
例子

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值