STM32N6系列

STM32N6系列微控制器是STMicroelectronics推出的高性能微控制器,基于ARM Cortex-M55内核,运行频率高达800 MHz,并引入了ARM Helium向量处理技术,为标准CPU带来了DSP处理能力。该系列是首款嵌入ST Neural-ART加速器™的STM32 MCU,专为高效能边缘AI应用设计。

STM32N6x7 AI line & STM32N6x5 GP line

STM32N6系列分为两个主要子系列:STM32N6x7 AI line 和 STM32N6x5 GP line。

 STM32N6x7 AI line

- Neural-ART Accelerator™:该系列集成了神经网络加速器,专为人工智能和机器学习应用优化,能够加速神经网络的推理和计算。

- 内存:拥有4.2 MB的连续RAM,适用于需要大量内存的复杂应用。

- 图形和多媒体加速器:支持图形和多媒体处理,加速图像和视频处理任务。

- 外部存储接口:提供快速的串行接口,用于连接外部存储器。

- 专用ISP(图像信号处理器):内置专用ISP,用于图像处理和优化。

- 多摄像头接口:支持多个摄像头接口,适用于需要多摄像头输入的应用,如高级视觉系统和监控设备。

 STM32N6x5 GP line

- 内存:同样拥有4.2 MB的连续RAM,适用于需要大量内存的复杂应用。

- 图形和多媒体加速器:支持图形和多媒体处理,加速图像和视频处理任务。

- 外部存储接口:提供快速的串行接口,用于连接外部存储器。

- 专用ISP(图像信号处理器):内置专用ISP,用于图像处理和优化。

- 多摄像头接口:支持多个摄像头接口,适用于需要多摄像头输入的应用,如高级视觉系统和监控设备。

 主要区别

- AI功能:STM32N6x7 AI line 集成了Neural-ART Accelerator™,专为人工智能和机器学习应用设计,能够加速神经网络的推理和计算。这是该系列与STM32N6x5 GP line的主要区别。

- 应用领域:由于集成了神经网络加速器,STM32N6x7 AI line 更适合需要人工智能和机器学习功能的应用,如智能设备、自动驾驶、机器人等。而STM32N6x5 GP line 则更适合通用处理任务,适用于广泛的嵌入式系统应用。

- STM32N6x7 AI line:适用于需要人工智能和机器学习功能的高级应用,集成了神经网络加速器。

- STM32N6x5 GP line:适用于广泛的通用处理任务,具有强大的图形和多媒体处理能力,但不具备专用的AI加速功能。

处理器

- 处理器:ARM Cortex-M55

- 时钟速度:高达800 MHz,适用于需要高处理能力的应用,并引入了Arm Helium向量处理技术,增强了DSP处理能力。

 存储器

- Flash存储器:高达2 MB的内部Flash存储器,用于程序和数据存储。

- RAM:4.2 MB的连续嵌入式RAM,理想用于神经网络或图形应用。

 外设接口

- ADC(模数转换器):多达24个通道的12位ADC,支持高速采样。

- DAC(数模转换器):两个12位DAC,用于模拟信号输出。

- 通信接口:

  - UART/USART:多达6个UART/USART接口,支持异步和同步通信。

  - SPI:多达4个SPI接口,支持高速串行通信。

  - I2C:多达3个I2C接口,支持多主多从通信。

  - CAN:两个CAN接口,支持工业标准的控制器局域网通信。

  - USB:一个全速USB 2.0接口,支持设备和主机模式。

  - 以太网:一个10/100以太网接口,支持网络通信。

  - 高速外部存储接口:支持Hexa-SPI、OCTOSPI、FMC接口。

 定时器

- 通用定时器:多达14个通用定时器,支持输入捕获、输出比较、PWM等功能。

- 高级定时器:两个高级定时器TIM1, TIM8,支持复杂的PWM和捕获比较功能。

- 低功耗定时器:一个低功耗定时器,适用于低功耗模式下的时间管理。

 安全特性

- 硬件加密:支持AES、DES、3DES等硬件加密算法,增强数据安全性。

- 安全启动:支持安全启动功能,确保系统启动的完整性和安全性。

- 真随机数生成器(TRNG):内置TRNG,提供高质量的随机数生成。

- 安全认证:符合SESIP Level 3和PSA Level 3认证标准。

 电源管理

- 低功耗模式:支持多种低功耗模式,包括睡眠模式、停止模式和待机模式,适用于电池供电的应用。

- 电源电压:工作电压范围为1.8V至3.6V,适应不同的电源环境。

 封装选项

- 封装类型:提供多种封装类型,如LQFP、BGA等,适应不同的应用需求。

- 引脚数:引脚数量从169到264不等,提供灵活的引脚配置。

- 工作温度:支持高达125°C的环境温度,适用于恶劣环境。

 开发工具

- 开发板:提供多种开发板和评估板,帮助快速启动开发。

- 软件工具:支持STM32CubeMX、STM32CubeIDE等开发工具,简化开发流程。

- 中间件:提供丰富的中间件库,如USB、TCP/IP、文件系统等,加速应用开发。

 应用领域

STM32N6系列微控制器广泛应用于以下领域:

- 工业自动化

- 智能家居

- 物联网(IoT)设备

- 医疗设备

- 消费电子产品

- 汽车电子

### STM32N6 上实现神经网络的方法 在嵌入式设备上部署神经网络模型面临资源有限的问题,如计算能力和内存。然而,通过适当的设计和技术手段可以在STM32系列微控制器上运行小型高效的神经网络。 对于STM32N6而言,可以采用轻量级框架来构建和执行简单的前馈型人工神经网络(Feedforward Neural Network, FNN),这类网络结构相对简单,适合于资源受限环境下的应用开发[^1]。 具体来说: #### 选择合适的库和支持工具 为了简化编程工作并提高效率,建议选用支持C/C++语言的专用机器学习推理引擎或库,比如TensorFlow Lite Micro 或者 Arm CMSIS-NN 库。这些库提供了针对ARM Cortex-M架构进行了优化的操作符实现,能够有效提升性能表现。 #### 数据预处理与量化 考虑到硬件平台的特点以及存储空间限制,在训练阶段完成后的浮点数权值需转换成整数量化形式保存下来;输入数据同样要经过相应的归一化处理以便更好地适应低精度运算需求。 #### 部署流程概述 1. 使用PC端软件(Python/PyTorch/Tensorflow等)创建、训练所需的ANN模型; 2. 将训练好的模型导出为兼容目标MCU的数据格式文件(.h/.c); 3. 利用所选的嵌入式ML SDK加载上述参数至内部Flash/SRAM中; 4. 编写主程序调用预测接口完成在线分类识别任务。 下面给出一段基于CMSIS-NN 的FNN实例代码片段用于说明如何定义一层全连接层操作: ```cpp #include "arm_nnfunctions.h" // 假设已经准备好了一组8位定点类型的权重矩阵W及偏置b const q7_t W[] = {...}; // 权重数组 const q7_t b[] = {...}; // 偏置项 void fully_connected_layer(const q7_t *input_data, const uint16_t input_size, const uint16_t output_size){ arm_fully_connected_q7_opt(input_data,W,b,output_size,input_size,...); } ``` 此段伪码展示了利用Arm提供的高效内核函数`arm_fully_connected_q7_opt()`来进行快速乘积累加(MACs)计算的过程,从而加速每一层之间的信号传递速度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值