基于图的金融时间序列分析

本文探讨了如何利用图模型提升金融时间序列预测的精度,介绍了TransE、TransH、TransR、TransD等图表示学习模型,并提及将这些模型与深度学习如CNN、LSTM结合预测股票价格的方法,同时提到了结合新闻情感分析和交易数据进行预测的应用案例。
摘要由CSDN通过智能技术生成

Tushare ID :475226

交易数据内容基本都可以从tushare直接获取

根据有效市场假说,在一个规则健全、清晰透明且充分竞争的的股票市场中,**所有有价值的信息都会迅速的反应到股价走势当中**。如何通过模型从交易数据等提取有用信息,预测股票价格或趋势是一个热点问题。时间序列模型**根据变量在过去时间的变化规律预测该变量未来的变化。**金融时间序列预测大多被认为是一个回归问题,但是在实际场景中,价格的准确预测并不容易做到且后续趋势的预测也能指导投资活动的进行,有大量关于趋势预测的研究,使用分类模型来解决金融预测问题。这两者的本质是相同的,区别在于对输出的不同解释。

加入图对于事件的描述显然可以将预测结果变得更加精准。

常见评价指标:
如果是回归任务,那么常见的是MSE MAPE MAE RMSE R²等描述预测结果拟合的好不好的指标
如果是分类任务,那么就是acc、F1指标等用的比较多
在股价预测场景下,可以根据预测结果制定一定的交易策略,那么还有夏普率、收益率等指标可供选择

 简述一下图表示的translate系列模型
是从word2vec启发开始的
TransE: Translating Embeddings for Modeling Multi-relational Data

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值