【数字电子逻辑设计】第2章 逻辑代数基础

目录

2.1 逻辑代数的基本概念

2.1.1 变量和运算

2.1.2 逻辑函数

2.2 逻辑代数的基本定理和规则

2.2.1 基本定理

2.2.2 重要规则

2.2.3 复合逻辑

2.3 逻辑函数表达式的形式与变换 

2.3.1 逻辑函数表达式的基本形式

2.3.2 逻辑函数表达式的标准形式

2.3.3 逻辑函数表达式的转换

2.4 逻辑函数化简

2.4.1 代数化简法

2.4.2 卡诺图化简法


 

2.1 逻辑代数的基本概念

逻辑代数L是一个封闭的代数系统,它由一个逻辑变量集K,常量0和1以及“或”、“与”、“非”三种基本运算所构成,记为L={K,+,·,-,0,1}。该系统应满足下列公理:

公理1 交换律

对于任意逻辑变量A、B,有

A + B = B + A

A\cdot B=B\cdot A

公理2 结合律

对于任意的逻辑变量A、B、C,有

\left ( A+B \right )+C=A+\left ( B+C \right )

\left ( A\cdot B \right )\cdot C=A\cdot \left ( B\cdot C \right )

公理3 分配律

对于任意的逻辑变量A、B、C,有

A+\left ( B\cdot C \right )=\left ( A+B \right )\cdot \left ( A+C \right )

A\cdot \left ( B+C \right )=A\cdot B+A\cdot C

公理4 0─1 律

对于任意逻辑变量A,有

A+0=A    A\cdot 1=A    A+1=1    A\cdot 0=0

公理5 互补律

对于任意逻辑变量A,存在唯一的 ,使得\overline{A}+A=1    \overline{A}\cdot A=0

2.1.1 变量和运算

逻辑代数和普通代数一样,是用字母表示其值可以变化的量,即变量。

逻辑变量与普通代数中的变量不同的是:

1.任何逻辑变量的取值只有两种可能性——取值0或取值1。

2.逻辑值 0 和 1 是用来表征矛盾的双方和判断事件真伪的形式符号,无大小、正负之分。

逻辑运算:逻辑代数中定义了“或”、“与” 、“非”三种基本运算。

1.“或”运算

如果决定某一事件是否发生的多个条件中,只要有一个或一个以上条件成立,事件便可发生,则这种因果关系称之为“或”逻辑。

逻辑代数表示法:F=A+B或者F=A\vee B

或运算的运算符号为 “ + ”,有时也用“ ∨” 表示

“或”运算的运算法则:0+0=0     1+0=1    0+1=1    1+1=1

实现“或”运算关系的逻辑电路称为“或”门。

2.“与” 运算

如果决定某一事件发生的多个条件必须同时具备,事 件才能发生,则这种因果关系称之为“与”逻辑。

逻辑代数表示法:F=A\cdot B 或者 F=A\wedge B

“与”运算的运算法则:0\cdot 0=0    1\cdot 0=0    0\cdot 1=0    1\cdot 1=1

实现“与”运算关系的逻辑电路称为“与”门。

3.“非” 运算

如果某一事件的发生取决于条件的否定,即事件与事件发生的条件之间构成矛盾,则这种因果关系称为“非”逻辑。

逻辑代数表示法:F=\overline{A} 或 F=\neg A

“非”运算的运算法则:\overline{0}=1 或 \overline{1}=0

数字系统中实现“非”运算功能的逻辑电路称为“非”门, 有时又称为“反相器”。

2.1.2 逻辑函数

逻辑代数中函数的定义与普通代数中函数的定义类似,即随自变量变化的因变量。

和普通代数中函数的概念相比,逻辑函数具有如下特点:

1.逻辑函数和逻辑变量一样,取值只有0和1两种可能;

2.函数和变量之间的关系是由“或”、“与”、“非”三种基本运算决定的 。

设:某一逻辑电路的输入逻辑变量为:A_{1}A_{2},……,A_{n}; 输出逻辑变量为:F

则:F 被称为A_{1}A_{2},……,A_{n} 的逻辑函数,记为F=f\left (A_{1},A_{2},......,A_{n}\right )

如何判断两个逻辑函数是否相等?

通常有两种方法:真值表法,代数法。

  F_{1}=f_{1}\left (A_{1},A_{2},......,A_{n}\right )     F_{2}=f_{2}\left (A_{1},A_{2},......,A_{n}\right )

若对应于逻辑变量 A_{1}A_{2},……,A_{n} 的任何一组取值, F_{1} 和 F_{2} 的值都相同,则称函数 F_{1} 和 F_{2} 相等,记作F_{1}=F_{2} 。

1. 逻辑函数的表示形式:

逻辑表达式、真值表、卡诺图。

(1)逻辑表达式

逻辑表达式是由逻辑变量和“或”、“与”、“非” 3种运算符以及括号所构成的式子。

逻辑表达式的简写:

1. “非”运算符下可不加括号,如 \overline{A\cdot B} , \overline{A+B} 等。

2. “与”运算符一般可省略,如 A\cdot B 可写成 AB 。

3. 在一个表达式中,如果既有“与”运算又有“或”运算,则按先“与”后“或”的规则进行运算,可省去括号,如 \left ( A\cdot B \right )+\left ( C\cdot D \right ) 可写为AB+CD 。 

注意: \left ( A\cdot B \right )+\left ( C\cdot D \right ) 不能省略括号,即不能写成A+B\cdot C+D !

 运算优先法则:\left ( \right )\rightarrow - \rightarrow \cdot \rightarrow \oplus \rightarrow +    高 \rightarrow 低

4. \left ( A+B \right )+C 或者A+\left ( B+C \right ) 可用A+B+C 代替; \left ( AB \right )C 或者A\left ( BC \right ) 可用 ABC 代替。

(2) 真值表

依次列出一个逻辑函数的所有输入变量取值组合及其相应函数值的表格称为真值表。

一个 n 个变量的逻辑函数,其真值表有 2^{n} 行。

(3) 卡诺图

卡诺图是由表示逻辑变量所有取值组合的小方格所构成的平面图。

2.2 逻辑代数的基本定理和规则

2.2.1 基本定理

定理1

0+0=0     1+0=1    0+1=1    1+1=1

0\cdot 0=0    1\cdot 0=0    0\cdot 1=0    1\cdot 1=1

定理2

A+A=A    A\cdot A=A

定理3

A+A\cdot B =A     A\cdot \left ( A+B \right )=A

定理4

A+A \cdot B=A+B    A\cdot \left ( A+B \right )=A\cdot B

定理5

\overline{\overline{A}}=A

定理6

\overline{A+B}=\overline{A}\cdot \overline{B}    \overline{A\cdot B}=\overline{A}+\overline{B}

定理7

A\cdot B+A\cdot \overline{B}=A    \left ( A+B \right )\cdot \left ( A+\overline{B} \right )=A

定理8

A\cdot B+\overline{A}\cdot C+B\cdot C=A\cdot B+\overline{A}\cdot C

\left ( A+B \right )\cdot \left ( \overline{A} +C\right )\cdot \left ( B+C \right )=\left ( A+B \right )\cdot \left ( \overline{A}+C \right )

2.2.2 重要规则

1. 代入规则

任何一个含有变量 A 的逻辑等式,如果将所有出现 A 的位置都代之以同一个逻辑函数 F ,则等式仍然成立。

注意:使用代入规则时,必须将等式中所有出现同一变量的地方均以同一函数代替,否则代入后的等式将不成立。

2. 反演规则

若将逻辑函数表达式F中所有的“·”变成“+”,“+”变 成“·”,“0”变成“1”,“1”变成“0”,原变量变成反变量,反变量变成原变量,并保持原函数中的运算顺序不变,则所得到的新的函数 为原函数F的反函数,这一规则称为反演规则。

注意:使用反演规则时,应保持原函数式中运算符号的优先顺序不变!

3. 对偶规则

如果将逻辑函数表达式F中所有的“·”变成“+”,“+”变成“·”,“0”变成“1”,“1”变成“0”,并保持原函数中的运算顺序不变,则所得到的新的逻辑表达式称为函数F的对偶式,并记作F’。

注意:求逻辑表达式的对偶式时,同样要保持原函数的运算顺序不变。

2.2.3 复合逻辑

实际应用中广泛采用“与非”门、“或非”门、“与或非”门、“异或”门等门电路。这些门电路输出和输入之间的逻辑关系可由3种基本运算构成的复合运算来描述,故通常将这种逻辑关系称为复合逻辑,相应的逻辑门则称为复合门。

1. 与非逻辑

与非逻辑是由与、非两种逻辑复合形成的:F=\overline{A\cdot B\cdot C...}

逻辑功能:只要变量 A,B,C,... 中有一个为0,则函数 F 为1;仅当变量 A,B,C,... 全部为1时,函数 F 为0。

实现与非逻辑的门电路称为“与非门”。

使用与非门可以实现与、或、非三种基本运算:

与: F=\overline{\overline{A\cdot B}\cdot 1}=\overline{\overline{A\cdot B}}=A\cdot B

或:F=\overline{\overline{A\cdot 1}\cdot \overline{B\cdot 1}}=\overline{\overline{A}\cdot \overline{B}}=A+B

非:F=\overline{A\cdot 1}=\overline{A}

只要有了与非门便可组成实现各种逻辑功能的电路,通常称与非门为通用门

2. 或非逻辑

或非逻辑是由或、非两种逻辑复合形成的,可表示为:F=\overline{A+ B+ C+...}

逻辑功能:只要变量 A,B,C,... 中有一个为1,则函数 F 为0;仅当变量 A,B,C,... 全部为0时,函数 F 为1。

实现或非逻辑的门电路称为“或非门”。

或非逻辑可以实现与、或、非三种基本运算:

与:F=\overline{\overline{A+0}+\overline{B+0}}=\overline{\overline{A}+\overline{B}}=A\cdot B

或:F=\overline{\overline{A+B}+0}=\overline{\overline{A+B}}=A+B

非:F=\overline{A+0}=\overline{A}

或非门同样可实现各种逻辑功能,是一种通用门

3. 与或非逻辑

与或非逻辑是由3种基本逻辑复合形成的,逻辑函数表达式的形式为: F=\overline{AB+CD+...}

逻辑功能:仅当每一个“与项”均为0时,才能使 F 为1,否则 F 为0。

实现与或非功能的门电路称为“与或非门”。

可以仅用与或非门去组成实现各种功能的逻辑电路,但它不是通用门

4. 异或逻辑

异或逻辑是一种两变量逻辑关系,可用逻辑函数表示为:F=A\oplus B=\overline{A}B+A\overline{B}

逻辑功能:变量A、B取值相同, F 为0;变量A、B取值相异, F 为1。

实现异或运算的逻辑门称为“异或门”。

A\oplus 0=A    A\oplus 1=\overline{A}    A\oplus A=0    A\oplus \overline{A}=1

当多个变量进行异或运算时,可用两两运算的结果再运算,也可两两依次运算。

注意:在进行异或运算的多个变量中,若有奇数个变量的值为1,则运算结果为1;若有偶数个变量的值为1,则运算结果为0。

5. 同或逻辑

同或逻辑也是一种两变量逻辑关系,其逻辑函数表达式为:F=A\odot B=\overline{A}\cdot \overline{B}+AB

功能逻辑:变量A、B取值相同, F 为1;变量A、B取值相异, F 为0。

实现同或运算的逻辑门称为“同或门” 。

注意:当多个变量进行同或运算时,若有奇数个变量的值为0,则运算结果为0;反之,若有偶数个变量的值为0,则运算结果为1。

实际应用中:通常用异或门加非门实现同或运算。

2.3 逻辑函数表达式的形式与变换 

2.3.1 逻辑函数表达式的基本形式

两种基本形式:与—或表达式和或—与表达式。

1. 与—或表达式

由若干“与项”进行“或”运算构成的表达式。

例如:F= \overline{A}B+A\overline{B}C+\overline{C}

“与项”有时又被称为“积项”; “与—或”表达式又称为“积之和”表达式。

2. 或—与表达式

由若干“或项”进行“与”运算构成的表达式。

例如:F\left ( A,B,C,D, \right )=\left (\overline{A} +B\right )\left ( B+\overline{C} \right )\left ( A+\overline{B} +C\right )D

“或项”有时又被称为“和项”; “或—与”表达式又称为“和之积”表达式。

3. 混合形式

例如:F\left ( A,B,C \right )=\left ( A\overline{B}+C\right )\left ( A+B\overline{C} \right )+B

2.3.2 逻辑函数表达式的标准形式

两种标准形式:标准与—或表达式(最小项表达式)和标准或—与表达式(最大项表达)。

1. 最小项

定义:如果一个具有n个变量的函数的“与项”包含全部n个变量,每个变量都以原变量或反变量形式出现一次,且仅出现一次,则该“与项”被称为最小项。有时又将最小项称为标准“与项”。

最小项的数目:n个变量可以构成2^{n}个最小项。

简写:m_{i}表示最小项。

规则:按照变量顺序将最小项中的原变量用1表示,反变量用0表示,由此得到一个二进制数,与该二进制数对应的十进制数即下标i的值。 

性质:最小项具有如下四条性质。  

性质1: 任意一个最小项,其相应变量有且仅有一种取值使这个最小项的值为1。并且,最小项不同,使其值为1的变量取值不同。

性质2: 相同变量构成的两个不同最小项相与为0。 因为任何一种变量取值都不可能使两个不同最小项同时为1,故相“与”为0。即:m_{i}\cdot m_{j}=0

性质3:  n个变量的全部最小项相“或”为1。 通常借用数学中的累加符号“\sum”,将其记为\sum_{i=0}^{2^{n}-1} m_{i}=1

性质4:  n个变量构成的最小项有n个相邻最小项。

相邻最小项:是指除一个变量互为相反外,其余部分均相同的最小项。

2. 最大项

定义:如果一个具有n个变量函数的“或项”包含全部n个变量,每个变量都以原变量或反变量形式出现一次,且仅出现一次,则该“或项”被称为最大项。有时又将最大项称为标准“或项”。 

数目:n个变量可以构成2^{n}个最大项。

简写:M_{i}表示最大项。

规则:按照变量顺序将最大项中的原变量用0表示,反变量用1表示,由此得到一个二进制数,与该二进制数对应的十进制数即下标i的值。

性质:最大项具有如下四条性质。

性质1:任意一个最大项,其相应变量有且仅有一种取值使这个最大项的值为0。并且,最大项不同,使其值为0的变量取值不同。

性质2:相同变量构成的两个不同最大项相“或”为1。 因为任何一种变量取值都不可能使两个不同最大项同时为0,故相“或”为1。即M_{i}+M_{j}=1

性质3:n个变量的全部最大项相“与”为0。通常借用数学中的累乘符号“\prod”将其记为\prod _{i=0}^{2^{n}-1} M_{i}=0

性质4:n个变量构成的最大项有n个相邻最大项。

相邻最大项:是指除一个变量互为相反外,其余变量均相同的最大项。

3. 最小项和最大项的关系 

在同一问题中,下标相同的最小项和最大项互为反函数。或者说,相同变量构成的最小项m_{i}和最大项M_{i}之间存在互补关系。即 \overline{m_{i}}=M_{i} 或者 m_{i}=\overline{M_{i}}

4. 标准与-或表达式 

由若干最小项相“或”构成的逻辑表达式称为标准“与—或”表达式,也叫做最小项表达式。

5. 标准或-与表达式 

由若干最大项相“与”构成的逻辑表达式称为标准“或—与”表达式,也叫做最大项表达式 。

2.3.3 逻辑函数表达式的转换

将一个任意逻辑函数表达式转换成标准表达式有两种常用方法: 代数转换法和真值表转换法

1. 代数转换法

求标准与—或式的一般步骤:

第一步:将函数表达式变换成一般与—或表达式。

第二步:反复使用 X=X\left ( Y+\overline{Y} \right ) 将表达式中所有非最小项的“与项”扩展成最小项。

求标准或—与式的一般步骤:

第一步:将函数表达式变换成一般或—与表达式。 

第二步:反复使用 A=\left ( A+B \right )\left (A+\overline{B} \right ) 将表达式中所有非最大项的“或项”扩展成最大项。 

2. 真值表转换法

求标准“与—或” 式

具体:真值表上使函数值为1的变量取值组合对应的最小项相“或”,即可构成一个函数的标准“与一或”式 。

求标准“或一与” 式

具体:真值表上使函数值为0的变量取值组合对应的最大项相“与”即可构成一个函数的标准“或一与”式 。

2.4 逻辑函数化简

2.4.1 代数化简法

几种常用方法如下:

1.并项法    A\overline{B}+AB=A

2.吸收法    A+AB=A

3.消去法    A+\overline{A}B= A+B

4.配项法    A\cdot 1=A\overline{A}+A=1

代数化简法就是运用逻辑代数的公理、定理和规则对逻辑函数进行化简的方法。

1. “与—或”表达式的化简

最简“与—或”表达式应满足两个条件:

1.表达式中的“与”项个数最少;

2.在满足上述条件的前提下,每个“与”项中的变量个数最少。

2. 或一与表达式的化简

最简“或一与”表达式应满足两个条件:

1.表达式中的“或”项个数最少;

2.在满足上述条件的前提下,每个“或”项中的变量个数最少。

此外,可以采用两次对偶法。具体如下:

第一步:对“或一与”表达式表示的函数F求对偶,得到“ 与-或”表达式F’;

第二步:求出F’的最简“与-或”表达式;

第三步:对F’再次求对偶,即可得到F的最简“或一与”表达式。 

代数化简法的优点是:不受变量数目的约束;当对公理、定理和规则十分熟练时,化简比较方便。

缺点是:没有一定的规律和步骤,技巧性很强,而且在很多情况下难以判断化简结果是否最简。

2.4.2 卡诺图化简法

卡诺图是一种平面方格图,每个小方格代表一个最小项,故又称为最小项方格图。

1.结构特点

n个变量的卡诺图由2n个小方格构成;

几何图形上处在相邻、相对、相重位置的小方格所代表的最小项为相邻最小项。

1. 结构特点 

从各卡诺图可以看出,在n个变量的卡诺图中,能从图形上直观、方便地找到每个最小项的n个相邻最小项。

3. 逻辑函数在卡诺图上的表示

(1). 给定逻辑函数为标准“与一或”表达式

当逻辑函数为标准“与一或”表达式时,只需在卡诺图上找出和表达式中最小项对应的小方格填上1,其余小方格填上0,即可得到该函数的卡诺图。

(2). 逻辑函数为一般“与一或”表达式

当逻辑函数为一般“与一或”表达式时,可根据“与”的公共性和“或”的叠加性作出相应卡诺图。

4. 卡诺图上最小项的合并规律

(1).两个小方格相邻, 或处于某行(列)两端时,所代表的最小项可以合并,合并后可消去一个变量。

(2).四个小方格组成一个大方格、或组成一行(列)、或处于相邻两行(列)的两端、或处于四角时,所代表的最小项可以合并,合并后可消去两个变量。  

4变量卡诺图上四个相邻最小项合并的典型情况:

(3).八个小方格组成一个大方格、或组成相邻的两行(列)、或处于两个边行(列)时,所代表的最小项可以合并,合并后可消去三个变量。 

n个变量卡诺图中最小项的合并规律归纳如下:

(1) 卡诺圈中小方格的个数必须为2m个,m为小于或等于n的整数。

(2) 卡诺圈中的2m个小方格有一定的排列规律,具体地说,它们含有m个不同变量,(n-m)个相同变量。

(3) 卡诺圈中的2m个小方格对应的最小项可用(n-m)个变量的“与”项表示。

(4) 当m = n 时,卡诺圈包围了整个卡诺图,可用1表示,即n个变量的全部最小项之和为1。

5. 用卡诺图化简逻辑函数

(1)求逻辑函数最简“与—或”表达式的一般步骤

第一步:作出函数的卡诺图

第二步:按最小项合并规则,对卡诺图上的1方格画卡诺圈,画卡诺圈时注意遵循以下原则:

在覆盖所有1方格的前提下,卡诺圈的个数应达到最少。 

在满足合并规则的前提下,卡诺圈的大小应达到最大。

第三步:写出每个卡诺圈对应的与项相“或”,即可得逻辑函数的最简与—或表达式。

(2)求逻辑函数最简“或-与”表达式的一般步骤

当给定逻辑函数为“与—或”表达式或标准“与—或” 表达式时,通常采用“两次取反法”。 具体如下:

第一步:作出F的卡诺图,求出反函数   的最简“与—或”表 达式(合并卡诺图上的0方格);

第二步:对的最简“与—或”表达式取反,得到函数F的 最简“或—与”表达式。

  • 3
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值