【数字电路逻辑设计】第1章 基本知识

目录

1.1   概述

重要概念

数字逻辑电路的类型和研究方法

1.2   数制及其转换

几个概念:数制、基数、位权

R进制数的表示方法:位置计数法、按权展开法

二进制数:运算规则、特点

十进制数转换为R进制数

1.3 带符号二进制数的代码表示

几个概念:真值、机器数

原码:小数原码、整数原码

反码:小数反码、整数反码、反码运算

补码:小数补码、整数补码、补码运算

1.4 几种常用的编码

二-十进制编码

简单可靠性编码-补充知识

简单可靠性编码


1.1 概述

重要概念

连续量-模拟量-模拟信号-模拟电路

时间和数值上均做连续变化的物理量,我们叫做“连续量”,也称为”模拟量”(例如温度、电压、速度);表示模拟量的信号称为“模拟信号”,处理模拟信号的电路称为“模拟电路”。

离散量-数字量-数字信号-数字电路

时间和数值上都是离散变化的物理量,称“离散量”,也称为“数字量”(例如:人数、身高),表示数字量的信号称为“数字信号”,处理数字信号的电路称为“数字电路”。

数字电路

基本工作信号是二值信号,即电路中采用0,1两种取值状态的信号。      

两种数值表现为电路中电压的“高”或“低”, 开关的“接通”或“断开”,晶体管的“导通”或“截止”

数字逻辑电路

由于数字电路的各种功能是通过逻辑运算和逻辑判断 来实现的,所以又将数字电路称为数字逻辑电路(或逻辑 电路)。

数字逻辑电路与模拟电路相比,具有如下特点:

  1. 二值信号
  2. 主要关心输出和输入之间的逻辑关系
  3. 速度快,精度高,功能强,可靠性好

数字集成电路

基本逻辑元件:逻辑门    

起源:半导体技术的发展    

摩尔定律:当价格不变时,集成电路上可容纳的元器件的数目,约每隔18-24个月便会增加一倍,性能也将提升一倍。    

根据单个芯片所集成的逻辑门数量将数字集成电路分为:SSI,MSI,LSI,VLSI。

数字系统

是一个能够对数字信号进行加工,传递和存储的实体,它由实现各种功能的数字逻辑电路相互连接而成。

数字计算机

数字逻辑电路的类型和研究方法

数字电路分为两类

数字电路的研究方法

1.2   数制及其转换

几个概念:数制、基数、位权

数制

人们对数量计数的一种统计规则。    

例如:十进制,二进制,八进制,十六进制

基数

计数制中所用到的数字符号的个数。

例如: 十 进 制:0 1 2 3 4 5 6 7 8 9    (D)

二 进 制:0 1  (B)    

八 进 制:0 1 2 3 4 5 6 7   (O)            

十六进制:0 1 2 3 4 5 6 7 8 9 A B C D E F  (H)

位权

表明不同数位上数值大小的一个固定常数。

R进制数的表示方法:位置计数法、按权展开法

R进制数转换为十进制数:按位权展开→求和

二进制数:运算规则、特点

运算规则

加法规则  0+0=0    0+1=1   1+0=1   1+1=0 (进位为1)

减法规则  0-0=0   1-0=1   1-1=0   0-1=1 (借位为1)

乘法规则  0×0=0  0×1=0   1×0=0    1×1=1 

除法规则  0÷1=0    1÷1=1 

特点

1、只有两个数码, 很容易用物理器件来实现。

2、运算规则简单。

3、可使用逻辑代数这一数学工具。

4、位数较多,使用不便,不合人们的习惯。所以日常生活(10)和计算机编程(8,16)中不常使用二进制。

十进制数转换为R进制数

整数部分:除 R取余法

小数部分:乘 R取整法

1.3 带符号二进制数的代码表示

几个概念:真值、机器数

1、真值:

直接用“+”和“–”表示符号的二进制数,不能在机器中使用。

2、机器数:

将符号和数值一起编码表示的二进制数称为机器数或机器码,一般将符号位放在数的最高位,用“0”表示正,用“1”表示负。

3、常用的机器码有原码、反码、补码三种。

原码:小数原码、整数原码

符号位:用“0”表示正,用“1”表示负。

数值位:和真值的数值位相同。

1.小数原码

2.整数原码

原码优点:简单明了,求取方便。

原码缺点:采用原码进行加减运算不方便。

反码:小数反码、整数反码、反码运算

符号位:用“0”表示正,用“1”表示负。

正数反码的数值位:和真值的数值位相同。

负数反码的数值位:是真值的数值位按位取反。

1.小数反码

2.整数反码

3、反码运算

采用反码进行加、减运算时,无论进行两数相加还是两数相减,均可通过加法实现。    

加、减运算规则如下:

 运算时,符号位和数值位一样参加运算。当符号位有进位产生时,应将进位加到运算结果的最低位,才能得到最后结果。

补码:小数补码、整数补码、补码运算

符号位:用“0”表示正,用“1”表示负。

正数补码的数值位:和真值的数值位相同。

负数补码的数值位:是真值的数值位按位取反之后在最低位加1。

1.小数补码

2.整数补码

原码变补码的简单运算规则:

对一个原码,从右向左,第一个“1”和其之右的“0”不变,其之左的“0”或“1”除符号位外全部取反。

例:(11010100)原=(10101100)补

3、补码运算

采用补码进行加、减运算时,无论进行两数相加还是两数相减,均可通过加法实现。    

加、减运算规则如下:

运算时,符号位和数值位一样参加运算。当符号位有进位产生时,将进位丢掉后即可得到正确结果。

1.4 几种常用的编码

二-十进制编码

为了既满足系统中使用二进制数的要求,又适应 人们使用十进数的习惯,通常使用4位二进制代码对十 进制数字符号进行编码,称为二—十进制编码,简称 BCD码。

根据代码中每一位是否有固定的权,将 BCD码分为: 8421码、5421码、2421码和余3码,BCD码是用二进制形 式表示的十进制数。

8421码

用4位二进制码表示一位十进制字符的一种有权码,4位二进制码从高位至低位的权依次为$2^3$$2^2$$2^1$$2^0$,即为8、4、2、1,故称为8421码。 是一种人机联系时广泛使用的中间形式。不允许出现1010~1111六种组合。

8421码与十进制数之间的转换

8421码与十进制数之间的转换是按位进行的,即十进制数的每1位与4位二进制编码对应。 

5421码

用4位二进制码表示一位十进制字符的另一种有权码,4位二进制码从高位至低位的权依次为5、4、2、1,故称为5421码。    

若一个十进制字符X的5421码为$a_3$ $a_2$ $a_1$ $a_0$,则该字符的值为X = 5$a_3$+ 4$a_2$ + 2$a_1$+ 1$a_0$

用途:      

最高位连续5个0后5个1,当计数器采用这种编码时,最高位可产生对称方波输出。

注意:

5421码不具备单值性。例如,0111和1010都对应十进制数字7。为了与十进制字符一一对应,5421码不允许出现0101-0111与1101-1111的6种状态。

2421码

是用4位二进制码表示一位十进制字符的另一种有权码,4位二进制码从高位至低位的权依次为2、4、2、1,故称为2421码,2421码不允许出现0101~1010的6种状态。    

若一个十进制字符X的2421码为$a_3$ $a_2$ $a_1$ $a_0$,则该字符的值为:X = 2$a_3$+ 4$a_2$ + 2$a_1$+ 1$a_0$

用途:

1、最高位连续5个0后5个1,当计数器采用这种编码时,最高位可产生对称方波输出。

2、是9的自补代码,可将减法转化为加法。

 余3码

是由8421码加上0011形成的一种无权码,由于它的每个字符编码比相应8421码多3,故称为余3码。

用途:

1、最高位连续5个0后5个1,当计数器采用这种编码时,最高位可产生对称方波输出。

2. 余3码是一种对9的自补代码,两个余3码表示的十进制数相加时,能产生正确的进位信号,但对和必须修正:有进位则结果加3,无进位则结果减3。

注意:

1.   余3码中不允许出现0000、0001、0010、1101、1110和1111。

2. 余3码与十进制数进行转换时,每位十进制数字的编码都应余3。

3. 余3码是一种对9的自补代码,两个余3码表示的十进制数相加时,能产生正确的进位信号,但对“和”必须修正:有进位则结果加3,无进位则结果减3.

简单可靠性编码-补充知识

运算“⊕”称为“异或”运算,运算规则是:                      

0⊕0=0;0⊕1=1;              

1⊕0=1;1⊕1=0。

简单可靠性编码

代码在形成和传送过程中都可能发生错误,为了提高数字系统的可靠性,形成了各种编码方式,常用的有:格雷(gray)码、奇偶检验码、字符编码

1、格雷(gray)码

Gray特点:任意两个相邻的数,其格雷码仅有一位不同。

Gray作用:避免代码形成或者变换过程中产生的错误。

2、奇偶检验码

是一种用来检验代码在传送过程中是否产生错误的代码。 

两种编码方式

特点:

编码简单、容易实现。

奇偶检验码只有检错能力,没有纠错能力 。

只能发现单错,不能发现双错 。 

3、字符编码

字符在数字系统中必须用二进制 编码表示,通常将其称为字符编码。最常用的字符编码是美国信息交换标准码,简称ASCII码(American Standard Code for Information Interchange)。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值