目录
1.1 概述
重要概念
连续量-模拟量-模拟信号-模拟电路
时间和数值上均做连续变化的物理量,我们叫做“连续量”,也称为”模拟量”(例如温度、电压、速度);表示模拟量的信号称为“模拟信号”,处理模拟信号的电路称为“模拟电路”。
离散量-数字量-数字信号-数字电路
时间和数值上都是离散变化的物理量,称“离散量”,也称为“数字量”(例如:人数、身高),表示数字量的信号称为“数字信号”,处理数字信号的电路称为“数字电路”。
数字电路
基本工作信号是二值信号,即电路中采用0,1两种取值状态的信号。
两种数值表现为电路中电压的“高”或“低”, 开关的“接通”或“断开”,晶体管的“导通”或“截止”。
数字逻辑电路
由于数字电路的各种功能是通过逻辑运算和逻辑判断 来实现的,所以又将数字电路称为数字逻辑电路(或逻辑 电路)。
数字逻辑电路与模拟电路相比,具有如下特点:
- 二值信号
- 主要关心输出和输入之间的逻辑关系
- 速度快,精度高,功能强,可靠性好
数字集成电路
基本逻辑元件:逻辑门
起源:半导体技术的发展
摩尔定律:当价格不变时,集成电路上可容纳的元器件的数目,约每隔18-24个月便会增加一倍,性能也将提升一倍。
根据单个芯片所集成的逻辑门数量将数字集成电路分为:SSI,MSI,LSI,VLSI。
数字系统
是一个能够对数字信号进行加工,传递和存储的实体,它由实现各种功能的数字逻辑电路相互连接而成。
数字计算机
数字逻辑电路的类型和研究方法
数字电路分为两类
数字电路的研究方法
1.2 数制及其转换
几个概念:数制、基数、位权
数制
人们对数量计数的一种统计规则。
例如:十进制,二进制,八进制,十六进制
基数
计数制中所用到的数字符号的个数。
例如: 十 进 制:0 1 2 3 4 5 6 7 8 9 (D)
二 进 制:0 1 (B)
八 进 制:0 1 2 3 4 5 6 7 (O)
十六进制:0 1 2 3 4 5 6 7 8 9 A B C D E F (H)
位权
表明不同数位上数值大小的一个固定常数。
R进制数的表示方法:位置计数法、按权展开法
R进制数转换为十进制数:按位权展开→求和
二进制数:运算规则、特点
运算规则
加法规则 0+0=0 0+1=1 1+0=1 1+1=0 (进位为1)
减法规则 0-0=0 1-0=1 1-1=0 0-1=1 (借位为1)
乘法规则 0×0=0 0×1=0 1×0=0 1×1=1
除法规则 0÷1=0 1÷1=1
特点
1、只有两个数码, 很容易用物理器件来实现。
2、运算规则简单。
3、可使用逻辑代数这一数学工具。
4、位数较多,使用不便,不合人们的习惯。所以日常生活(10)和计算机编程(8,16)中不常使用二进制。
十进制数转换为R进制数
整数部分:除 R取余法
小数部分:乘 R取整法
1.3 带符号二进制数的代码表示
几个概念:真值、机器数
1、真值:
直接用“+”和“–”表示符号的二进制数,不能在机器中使用。
2、机器数:
将符号和数值一起编码表示的二进制数称为机器数或机器码,一般将符号位放在数的最高位,用“0”表示正,用“1”表示负。
3、常用的机器码有原码、反码、补码三种。
原码:小数原码、整数原码
符号位:用“0”表示正,用“1”表示负。
数值位:和真值的数值位相同。
1.小数原码
2.整数原码
原码优点:简单明了,求取方便。
原码缺点:采用原码进行加减运算不方便。
反码:小数反码、整数反码、反码运算
符号位:用“0”表示正,用“1”表示负。
正数反码的数值位:和真值的数值位相同。
负数反码的数值位:是真值的数值位按位取反。
1.小数反码
2.整数反码
3、反码运算
采用反码进行加、减运算时,无论进行两数相加还是两数相减,均可通过加法实现。
加、减运算规则如下:
运算时,符号位和数值位一样参加运算。当符号位有进位产生时,应将进位加到运算结果的最低位,才能得到最后结果。
补码:小数补码、整数补码、补码运算
符号位:用“0”表示正,用“1”表示负。
正数补码的数值位:和真值的数值位相同。
负数补码的数值位:是真值的数值位按位取反之后在最低位加1。
1.小数补码
2.整数补码
原码变补码的简单运算规则:
对一个原码,从右向左,第一个“1”和其之右的“0”不变,其之左的“0”或“1”除符号位外全部取反。
例:(11010100)原=(10101100)补
3、补码运算
采用补码进行加、减运算时,无论进行两数相加还是两数相减,均可通过加法实现。
加、减运算规则如下:
运算时,符号位和数值位一样参加运算。当符号位有进位产生时,将进位丢掉后即可得到正确结果。
1.4 几种常用的编码
二-十进制编码
为了既满足系统中使用二进制数的要求,又适应 人们使用十进数的习惯,通常使用4位二进制代码对十 进制数字符号进行编码,称为二—十进制编码,简称 BCD码。
根据代码中每一位是否有固定的权,将 BCD码分为: 8421码、5421码、2421码和余3码,BCD码是用二进制形 式表示的十进制数。
8421码
用4位二进制码表示一位十进制字符的一种有权码,4位二进制码从高位至低位的权依次为、、、,即为8、4、2、1,故称为8421码。 是一种人机联系时广泛使用的中间形式。不允许出现1010~1111六种组合。
8421码与十进制数之间的转换
8421码与十进制数之间的转换是按位进行的,即十进制数的每1位与4位二进制编码对应。
5421码
用4位二进制码表示一位十进制字符的另一种有权码,4位二进制码从高位至低位的权依次为5、4、2、1,故称为5421码。
若一个十进制字符X的5421码为 ,则该字符的值为X = 5+ 4 + 2+ 1
用途:
最高位连续5个0后5个1,当计数器采用这种编码时,最高位可产生对称方波输出。
注意:
5421码不具备单值性。例如,0111和1010都对应十进制数字7。为了与十进制字符一一对应,5421码不允许出现0101-0111与1101-1111的6种状态。
2421码
是用4位二进制码表示一位十进制字符的另一种有权码,4位二进制码从高位至低位的权依次为2、4、2、1,故称为2421码,2421码不允许出现0101~1010的6种状态。
若一个十进制字符X的2421码为 ,则该字符的值为:X = 2+ 4 + 2+ 1
用途:
1、最高位连续5个0后5个1,当计数器采用这种编码时,最高位可产生对称方波输出。
2、是9的自补代码,可将减法转化为加法。
余3码
是由8421码加上0011形成的一种无权码,由于它的每个字符编码比相应8421码多3,故称为余3码。
用途:
1、最高位连续5个0后5个1,当计数器采用这种编码时,最高位可产生对称方波输出。
2. 余3码是一种对9的自补代码,两个余3码表示的十进制数相加时,能产生正确的进位信号,但对和必须修正:有进位则结果加3,无进位则结果减3。
注意:
1. 余3码中不允许出现0000、0001、0010、1101、1110和1111。
2. 余3码与十进制数进行转换时,每位十进制数字的编码都应余3。
3. 余3码是一种对9的自补代码,两个余3码表示的十进制数相加时,能产生正确的进位信号,但对“和”必须修正:有进位则结果加3,无进位则结果减3.
简单可靠性编码-补充知识
运算“⊕”称为“异或”运算,运算规则是:
0⊕0=0;0⊕1=1;
1⊕0=1;1⊕1=0。
简单可靠性编码
代码在形成和传送过程中都可能发生错误,为了提高数字系统的可靠性,形成了各种编码方式,常用的有:格雷(gray)码、奇偶检验码、字符编码
1、格雷(gray)码
Gray特点:任意两个相邻的数,其格雷码仅有一位不同。
Gray作用:避免代码形成或者变换过程中产生的错误。
2、奇偶检验码
是一种用来检验代码在传送过程中是否产生错误的代码。
两种编码方式
特点:
编码简单、容易实现。
奇偶检验码只有检错能力,没有纠错能力 。
只能发现单错,不能发现双错 。
3、字符编码
字符在数字系统中必须用二进制 编码表示,通常将其称为字符编码。最常用的字符编码是美国信息交换标准码,简称ASCII码(American Standard Code for Information Interchange)。