2、图特征工程

文章详细介绍了传统图特征工程,包括节点特征(如节点连接数、重要度、graphlet信息)和连接层面特征。还讨论了全图特征工程的方法,并重点讲解了Weisfeiler-LehmanKernel算法在解决图同构问题和图相似度度量中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 一、传统图特征工程

1、图特征

图点本身就具备的特征称为属性特征(如:连接权重、节点类型等),属性特征大部分时候都是多模态的。

图中一个节点和其他节点之间的连接关系称为连接特征(结构信息)

人工提取并构造的特征称为特征工程。(将图变为向量)特征工程一般针对图的连接特征进行构造

2、节点特征工程

节点层面连接特征分为:

①节点的连接数

②节点的重要度

③节点的聚集系数(某节点与其相邻节点之间是否有联系)

④节点的子图信息(某节点周围有多少人工定义的子图)

2.1 节点连接数

求节点连接数,直接按某行/某列求和即可;或将邻接矩阵与一个值为1的向量相乘即可。但节点连接数不考虑连接的质量。若考虑节点重要度,则可通过以下几种指标衡量

2.2 节点重要度

1)度中心性(Degree Centrality)

无向图:邻居节点数量

有向图:分为入度与出度

其中deg(v)表示节点v的度数,n表示图中节点的总数

2)接近中心性(Clossness Centrality)

衡量节点的影响范围和在信息传播中的作用,指节点到其他节点的平均距离的倒数

3)介数中心性(Betweenness centrality)

指节点在所有最短路径中出现的次数。该指标可以衡量节点在信息传播和资源流动中的作用。

4)特征向量重要度(Eigenvector Centrality)

指节点的重要性与其相邻节点的重要性有关。如果一个节点与其他重要节点相连,那么它的重要性也会提高。

5)集群系数(Clustering Coefficient)

计算方法为:该节点的周围节点之间相连数 / 该节点与周围节点相连数,值域为[0,1]。详见下图示例:

分母为相邻节点两两个数

分子为v节点邻居节点两两连接数,可通过数三角形得到,这种三角形连接被称为:自我中心网络(ego-network)

2.3 graphlet-节点的子图信息

相同样的节点数构成非同形子图(类似同分异构体),例如4个节点可以构成6种graphlet

 提取某节点周围的graphlet个数即可构成一个称为Graphlet Degree Vector(GDV)

3、连接层面特征工程

3.1 目的

通过已知连接补齐未知连接。可以通过两种方法来获取D维向量:

①直接提取连接的特征

②将连接两端节点的D维向量拼在一起(但这种方法会丢失link本身的连接信息)

3.2 连接预测的一般方法为

①获取连接的D维向量

②将D维向量送入机器学习中进行计算,获得分数

③将分数 c(x,y) 进行排序,选出最高的n个新连接

④计算这n个预测结果与真实值

3.3 连接特征

 连接特征一般分为:①节点间的距离;②节点局部连接信息;③节点在全图的连接信息

3.3.1 最短路径长度

两个点之间经过节点最少的路径上的节点数,但是其与节点连接数一样只看数量不看权重。

3.3.2 基于两节点的局部连接信息

1)common neighbors

2)杰卡德相似性

共同相邻节点个数;交并比等。但若两个节点不存在局部连接,则其交并比和共同相邻节点个数均会为0。例如下图中A和E就不存局部连接。

3)Adamic-Adar(adac)

Adamic Adac算法常用于社交链路中关系的预测,如好友推荐,美食推荐等等

其中N(u)是与相邻的节点集u。

值A(x,y)=0表示两个节点不接近,而较高的值表示节点较近

该库包含一个计算两个节点之间接近都的函数

3.3.3 节点在全图的连接信息

1)卡兹系数(Katz index)

1.1 )基础

表示节点u和节点v之间的长度为k的路径个数。计算方法如下:

  • 用邻接矩阵的幂运算
  • 离散数学中提到,邻接矩阵的n次幂表示的就是路径长度为n的路径(假设每条路径长度均为1)

1.2)推导

当距离为1时,Katz index 值为 邻接矩阵

当距离为2时,Katz index 值为 邻接矩阵的平方

根据数学归纳法证明,当距离为 L 时,Katz index值为 邻接矩阵的 L 次幂

1.3)加 discount factor

当路径长度 正无穷 时,没有太大意义,对卡茨系数进行衰减

公式如下:

4、全图特征工程

目的是提取整张图的特征,将其变为D维向量,反映全图结构特点。

实际就是在计算不同特征在图中存在的个数

4.1 (将图视为文章,节点视为单词 Bag-of-Words (BoW) )

但这种方法有一个缺陷,就是只看是否存在第 i 个节点而不关心连接结构,如下图中两个图编码的D维向量一致,均为[1 1 1 1]

4.2 使用Bag-of-Node-degrees,但是同样的只看node dgree,不看节点也不看连接结构

4.3 Bag-of-xxx可以推广到之前提到的任意特征中,比如将全图的graphlets作为应用场景,其相较于节点层面的graphlets有如下区别:①可以存在孤立节点;②计数对象为全图,而不是特定节点邻域。

将两张图的graphlet进行数量积则可得到Graphlet Kernel(一个标量),该指标可以反映两张图是否相近/匹配,公式记作:

若两张图尺寸不一致则需要对其进行归一化

但是这种做法对算力的消耗极大。故一般采用Weisfeiler-Lehman Kernel算法,采用的是颜色微调的思想(Color refinement),其具体做法如下:

5、Weisfeiler-Lehman Kernel算法

原论文:The Weisfeiler-Lehman Test of Isomorphism

参考文章:The Weisfeiler-Lehman Isomorphism Test | David Bieber

5.1 目标

WL-test是目前解决图同构问题最有效的算法

5.2 两个图是同构图 Graph Isomorphism的性质

  1. 两图的边和顶点数量相同,且边的连接性相同
  2. 也可以认为一图的点是由另一图的点映射得到
  3. 计算图同构可以度量图的相似度(比如实际应用中具有相似结构的分子可能具备相似的功能特性)

5.3 思想

通过对相邻节点的节点标签排序后的集合来扩展节点标签,并将这些扩展后的标签压缩为新的短标签

5.4 更新流程

  1. 将图初始化
  2. 根据邻居节点的连接数量,对其进行编码调整
  3. 将不同的编码以不同的颜色代替(Hash)
  4. 重复以上步骤,最后两个相同结构的节点颜色始终相同
  5. 这样就将每张图变成了一个维度较低的向量。将这两张图的向量求内积即可得到Weisfeiler-Lehman kernel

示例:

5.5 WL子树

  • 在WL Test的第k次迭代中,一个节点的标签代表了:以该节点为根的高度为k的子树结构
  • 当两个节点的h层的标签一样时,表示:分别以这两个节点为根节点的WL子树是一致的
  • 举例:右图是节点1迭代两次的子树

5.6 公式表示

  • WL-test分为四步:聚合邻接节点标签、多重集排序、标签压缩、更新标签

二、图嵌入

 1、图嵌入目标

用低维、稠密、实值的向量表示网络中的节点。图嵌入是将属性图转换为向量或向量集。嵌入应该捕获图的拓扑结构、顶点到顶点的关系以及关于图、子图和顶点的其他相关信息

2、图嵌入方法分类

1)基于因子分解的方法

2)基于随机游走的方法

3)基于深度学习的方法

三、graph embedding汇总

待补充

1、Deepwalk

1.1 核心思想

DeepWalk的思想类似word2vec,使用图中节点与节点的共现关系来学习节点的向量表示。那么关键的问题就是如何来描述节点与节点的共现关系,DeepWalk给出的方法是使用随机游走(RandomWalk)的方式在图中进行节点采样。

RandomWalk是一种可重复访问已访问节点的深度优先遍历算法。给定当前访问起始节点,从其邻居中随机采样节点作为下一个访问节点,重复此过程,直到访问序列长度满足预设条件。

获取足够数量的节点访问序列后,使用skip-gram model 进行向量学习。

1.2 算法实现步骤

①输入network/graph

②进行随机游走(random walk)

③得到节点序列(representation mapping)

④放到skip-gram模型中(中间节点预测上下文节点)

⑤output: representation(中间的隐层)

2、LINE

3、node2vec

4、Struc2vec

5、SDNE

四、图嵌入基础-词嵌入

词嵌入的目标:将词语映射为一个实数向量,同时保留词语之间语义的相似性和相关性

思想:通过某种降维算法,将向量映射到低纬度空间中,相似的词语位置较近,不相似的词语位置较远

1、N-gram

N-gram(N元)模型,就是在计算概率时,忽略长度大于N的上下文词的影响,只考虑前面的N个词

基于统计的语言模型,从概率论专业角度来描述就是:为长度为m的字符串确定其概率分布P(w_1, w_2, ..., w_n),其中w_1到w_n依次表示文本中的各个词语。一般采用链式法则计算其概率值:

P(w_1, w_2, ..., w_n) = P(w_1)P(w_2|w_1)P(w_3|w_1,w_2)...P(w_m|w_1,w_2,...,w_{m-1})

缺陷:N值越大,保留的词序信息(上下文)越丰富,但计算量也呈指数级增长。

2、NNLM

2.1 网络结构

 图中参数解释

look-up:查表

C(w)表示w对应的词向量

V表示语料中的总词数,m表示词向量的维度

矩阵C为 m行,|V| 列

2.2 前向传播

  1. 输入:前N-1个词语的向量(one-hot表示的向量)拼接,形成以一个(n-1)Xm大小的向量,记为x
  2. 网络的第二层(隐藏层):直接使用全连接,d+Hx
  3. 输出:第N个词语的一组概率,y=b+wx+Utanh(d+Hx),其中U为|V|Xh矩阵,从隐藏层到输出层的参数

2.3 目标函数

2.4  网络结构的示意图表示

 2.5 示例

设词典大小为1000,向量维度为25,N=3

先将前N个词表示成独热向量

输入矩阵为:[3, 1000]

权重矩阵:[1000, 25]

隐藏层:[3, 1000] * [1000, 25] = [3, 25]

输出层权重:[25, 1000]

输出矩阵:[3, 25] * [25, 1000] = [3, 1000] ==> [1, 1000],表示预测属于1000个词的概率.

        其中,将[3,1000]转化过程可用求和、求均值、权重相加等方法,变成【1,1000】

3、Word2vec

目标:学习一个从高维稀疏离散向量到低维稠密连续向量的映射。

特点:近义词向量的欧氏距离比较小,词向量之间的加减法有实际物理意义。

Word2Vec由两部分组成:CBOW和Skip-Gram

3.1 CBOW

训练目标是最大化给定上下文时中心单词出现的概率

与NNLM区别:

将中间的隐藏层去掉。同时,用来预测object word的context word的词向量不再合并, 而是求平均

3.2 Skip-gram

4、共现矩阵

定义:共现(co-occurrence)矩阵指通过统计一个事先指定大小的窗口内的词语共现次数,以词语周边的共现词的次数做为当前词语的向量

主要用于发现主题,解决词向量相近关系的表示。将共现矩阵行(列)作为词向量

共现矩阵的不足

面临稀疏性问题、向量维数随着词典大小线性增长

解决:SVD、PCA降维,但是计算量大

5、随机游走-Random walk(RW)

5.1 概述

类似于布朗运动,是布朗运动的理想状态,任何无规则行走所带的守恒量都各自对应着一个扩散运输定律。

 每过一个单位时间,游走者从x出发以固定概率随机移动一个单位。

参考及学习资料

书籍:深入浅出图神经网络(链接:https://pan.baidu.com/s/1GYm8FxUh0GbJDftr9RecCg 
提取码:46ez )

斯坦福课程:https://www.youtube.com/playlist?list=PLoROMvodv4rPLKxIpqhjhPgdQy7imNkDn

课件:CS224W | Home (stanford.edu)

YouTube视频:CS224W: Machine Learning with Graphs

博客:A Gentle Introduction to Graph Neural Networks

### 数据挖掘中特征工程的相关片 在数据挖掘过程中,特征工程是一个至关重要的环节。它涉及从原始数据中提取有用的信息并将其转换为适合机器学习模型使用的格式。为了更好地理解这一过程,可以通过一些常见的示来说明。 #### 特征工程技术概述 特征工程通常包括以下几个方面的工作: - **数据预处理**:清洗和准备数据以便后续操作。 - **特征创建**:基于现有数据生成新的特征变量。 - **特征变换**:通过数学函数或其他方法改变特征的分布或形式。 - **特征选择**:挑选最能代表问题本质的一组特征子集[^1]。 这些步骤可以用表清晰地表示出来,下面是一些可能用于解释特征工程概念及其流程的图像类型: #### 常见的特征工程示 ##### 1. 流程 此类型的形展示了整个特征工程的过程,从获取初始数据到最后构建好可供训练的特征矩阵。每个阶段都标记清楚,使得读者能够快速了解各个部分之间的关系以及如何逐步推进至最终成果。 ```mermaid graph TD; A[开始] --> B(加载数据); B --> C{清理缺失值}; C -->|是| D[填充/删除]; C -->|否| E; D & E --> F(标准化数值型字段); F --> G(编码分类标签); G --> H(降维PCA等); H --> I(保存特征文件); I --> J[结束]; ``` ##### 2. 数据流 (DFD) 这种特别适用于描绘不同组件间的数据交互情况,在这里可以用来展示输入数据经过一系列处理后成为优化后的特征集合的具体路径。这有助于揭示哪些模块负责特定的任务,并且可以帮助团队成员之间沟通复杂系统内部运作机制。 ![Data Flow Diagram Example](https://example.com/data_flow_diagram.png) 请注意上述链接仅为示意用途;实际应用时应替换为具体案例中的真实资源地址。 ##### 3. 变换前后对比 此类插直观呈现了某些典型特征变化前后的样子,比如连续属性被分箱化之后的样子或者是类别型特征经独热编码后的结构差异。这对于非技术人员来说非常友好,因为他们可以直接看到效果而不需要深入了解背后的算法细节[^4]。 ![Before and After Transformation Comparison](https://example.com/before_after_transformation_comparison.png) 同样地,这里的URL也需要根据实际情况调整指向有效的样本素材位置。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值