四、表示学习与图信号处理

目录

一、表示学习

1、 表示学习分类

2、自编码器-基于重构的方法(Auto-Encoder)

2.1 介绍

 2.2 自编码器分类

2.3 去噪自编码器

2.4 稀疏自编码器

2.5 变分自编码器 VAE(Variational Auto-Encoder)

2.6 神经网络自编码器三大特点

2.7 自编码器的应用

二、图信号处理(graph Signal Processing,GSP)

1、图信号基本定义

2、图的拉普拉斯矩阵

2.1 概述

2.2 拉普拉斯矩阵(Laplacian matrix))定义

2.3 拉普拉斯矩阵归一化方式

2.4 性质

2.5 示例

3、图傅里叶变换

4、图滤波器

4.1 定义

4.2 性质

4.3 常见的滤波器


一、表示学习

从数据中得到判别性特征的方法,减少机器学习算法对特征工程的依赖

目标

学习到一个映射:f:X→R^d,将输入映射到一个稠密的低维向量空间

1、 表示学习分类

1)离散表示与分布式表示

离散表示:one-hot编码,词袋模型就是以此为基础构架

分布式表示:RGB表示颜色的方法

2)端到端的表示学习方法

3)基于重构损失的方法

4)基于对比损失的方法

2、自编码器-基于重构的方法(Auto-Encoder)

2.1 介绍

自编码器是一种表示学习模型,以输入数据为参考,是一种无监督学习模型,可以用于数据降维和特征提取。将输入映射到某个特征空间,再从这个特征空间映射回输入空间进行重构。训练完成后,使用编码器进行特征提取。

encoder 编码器:输入数据提取特征

decoder解码器:基于提取的特征重构出输入数据

从上图可以看出,自编码器模型主要由编码器(Encoder)和解码器(Decoder)组成,其主要目的是将输入x转换成中间变量y,然后再将y转换成x_,然后对比输入x和输出x_,使得他们两个无限接近。

 2.2 自编码器分类

两大类:欠完备自编码器和过完备自编码器

2.2.1 欠完备自编码器

输入x,隐藏层状态h,输出为x~

限定 h 的维度比 x 小,符合这种条件的称为欠完备自编码器

2.2.2过完备自编码器

当编码器的维度大于输入维度,称为过完备自编码器

这种编码器必须增加限制,否则学不到任何有用的信息

常用的方法为增加正则化约束,下面介绍几种常见的正则化编码器

2.3 去噪自编码器

改进之处在于原始输入的基础上加入噪声,迫使编码器不能简单学习恒等变换,必须从加噪声的数据中提取出有用信息用于恢复数据

具体做法是随机将一些输入置为0,得到了加入噪声的输入x作为编码器的输入,解构出不带噪声的数据x,损失函数为

2.4 稀疏自编码器

除在输入加噪声,在损失函数上加正则项使得模型学习到有用的特征

以限制神经元的活跃度来约束模型,尽可能使大部分神经元不活跃

2.5 变分自编码器 VAE(Variational Auto-Encoder)

2.5.1 VAE概述

原理:本质是生成模型

目标:建模样本的分布P(x),训练完成后,使用解码器生成样本

VAE变分自动编码器作为AE的变体,它主要的变动是对编码(code)的生成上。编码(code)不再像AE中是唯一映射的,而是具有某种分布,使得编码(code)在某范围内波动时都可产生对应输出。

2.5.2 为什么需要VAE

传统的AE只能生成 similar image

2.5.3 原理

在编码过程中,增加一些限制,迫使生成的隐向量能够粗略遵循一个标准正态分布(一般遵循高斯分布)

2.5.4 损失函数

2.5.5 编码过程

2.5.6 与自编码器相比

  1. AE是一种无监督的表示学习方法,VAE是一种生成模型
  2. AE隐空间不连续

2.6 神经网络自编码器三大特点

1、自动编码器是数据相关的(data-specific 或 data-dependent),这意味着自动编码器只能压缩那些与训练数据类似的数据。例如人脸训练数据只能预测人脸相关,不能预测花草

2、自动编码器是有损的,意思是解压缩的输出与原来的输入相比是退化的

3、自动编码器是从数据样本中自动学习的,这意味着很容易对指定类的输入训练出一种特定的编码器,而不需要完成任何新工作。

2.7 自编码器的应用

2.7.1 特征降维

从直观上来看,自动编码器可以用于特征降维,类似主成分分析PCA,但是其相比PCA其性能更强,这是由于神经网络模型可以提取更有效的新特征

2.7.2 特征提取

自动编码器学习到的新特征可以送入有监督学习模型中,所以自动编码器可以起到特征提取器的作用

实例:图片的压缩及还原

为什么要进行压缩:1、保证输入图片的大小一致;2、减少输入数据,提取图片中最具代表性的特征

3、基于对比损失的方法-Word2vec

对比损失:构建正负样本,最大化正样本之间的相似度,最小化负样本之间的相似度

详细解释见NLP词嵌入章节

二、图信号处理(graph Signal Processing,GSP)

1、图信号基本定义

是离散信号处理(Discrete Signal Processing,DSP)在图信号领域的应用

图信号:给定图G=(V,E),V表示图中的节点集合,假设其长度为N,图信号则是一种描述V→R的映射,表示成向量的形式:x=[x1,x2,···,xn]^T,其中xi表示的是节点vi上的信号强度。

蓝色代表信号强度,这里的图信号只有一个通道,实际的图节点可能有很多通道

2、图的拉普拉斯矩阵

2.1 概述

拉普拉斯特征映射(Laplacian Eigenmaps)是一种不太常见的降维算法,它看问题的角度和常见的降维算法不太相同,是从局部的角度去构建数据之间的关系

拉普拉斯特征映射是一种基于图的降维算法,它希望相互间有关系的点(在图中相连的点)在降维后的空间中尽可能的靠近,从而在降维后仍能保持原有的数据结构

2.2 拉普拉斯矩阵(Laplacian matrix))定义

也称为基尔霍夫矩阵, 是表示图的一种矩阵。

给定一个有n个顶点的图G=(V,E) ,其拉普拉斯矩阵被定义为:L=D-W

其中,D是图G的度矩阵,A是图G的邻接矩阵。L中的元素可定义为

2.3 拉普拉斯矩阵归一化方式

1)对称归一化的拉普拉斯矩阵(Symmetric Normalized Laplacian Matrix)

2)对称归一化的拉普拉斯矩阵(Symmetric Normalized Laplacian Matrix)

2.4 性质

  • L是对称的
  • L是半正定矩阵(每个特征值λ i ≥ 0 )
  • L的每一行每一列的和为0
  • L的最小特征值为0

2.5 示例

3、图傅里叶变换

3.1 目标

将图信号由空域视角转换到频域视角

待补充

4、图滤波器

4.1 定义

对给定图信号的频谱中各个频率分量的强度进行增强或衰减的操作

4.2 性质

  1. 线性关系
  2. 滤波操作是顺序无关的
  3. 如果h(λ)≠0,该滤波操作是可逆的

4.3 常见的滤波器

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值