## MobileNet(轻量级神经网络)相关知识
1.前言
神经网络体积越来越大,结构越来越复杂,预测和训练需要的硬件资源也逐步增多,往往只能在高算力的服务器中运行深度学习神经网络模型。移动设备因硬件资源和算力的限制,很难运行复杂的深度学习网络模型。
深度学习领域内也在努力促使神经网络向小型化发展。在保证模型准确率的同时体积更小,速度更快。到了2016年直至现在,业内提出了SqueezeNet、ShuffleNet、NasNet、MnasNet以及MobileNet等轻量级网络模型。这些模型使移动终端、嵌入式设备运行神经网络模型成为可能。而MobileNet在轻量级神经网络中较具代表性。
2.什么是MobileNet
MobileNet网络是由谷歌团队在2017年提出的,专注于移动端或者嵌入式设备中的轻量级CNN网络,相比于传统的卷积神经网络在准确率稍微减少但参数量与运算量大大降低。
3.MobileNet的亮点
- Depthwise Convolution(大大减少参数量与运算量)
- 增加超参数a和β
- MobileNetV2中的倒残差结构(Inverted Residual)和Linear Bottlenecks