MobileNet 网络详解

一、了解

网络亮点:

1、DW网络,大大减少运算量和参数数量

2、增加超参数:控制卷积层卷积核个数的超参数 \alpha,控制图像输入大小的超参数 \beta,这两个超参数是人为设定的,不是机器学习到的。

二、DW卷积(Depthwise Conv)

传统卷积:卷积核channel= 输入特征矩阵channel  输出特征矩阵channel=卷积核个数

DW卷积:卷积核个数=1 ;输入特征矩阵channel=卷积核个数=输出特征矩阵channel

 Depthwise Separable Conv 深度可分卷积

由两部分组成 DW卷积 + PW卷积(Pointwise Conv)

PW卷积类似于普通卷积(只不过卷积核的大小=1)

 与普通卷积的参数比较

三、MobileNet V1网络

网络模型结构

conv / s2 :表示普通的卷积结构     s2表示步距为2

卷积核参数【高 x 宽 x 输入特征矩阵的深度 x 卷积核个数】

conv dw / s1: 表示dw卷积 步距为1   因为dw卷积的卷积核深度为1,所以只有输出特征矩阵的深度。

整个模型类似于VGG网络,将一系列卷积串行链接

统计数据

 table8:比较了三个网络的准确率、运算量、模型参数。可以看出MobileNet在准确率只下降了0.9%的情况下,运算量和模型参数都大大减小。

控制卷积层卷积核个数的超参数 \alpha:table6中数据显示,卷积核的个数下降,准确率、运算量、模型参数都会下降。根据自己的项目需求去选择\alpha

控制图像输入大小的超参数 \beta:table7中数据显示,适当的减小输入图像的大小,能够保证准确率降低很少的前提下,来大幅减少运算量。根据项目需求自己设定

有时候dw卷积不起作用,在MobileNet V2版本中会有一定的改善。 

四、MobileNet V2 网络

网络亮点 :

1、Inverted Residuals(倒残差结构)

2、Linear Bottlenecks

倒残差结构:

正常的残差结构:先降维,经过卷积后,再升维,中间使用 relu 激活函数

倒残差结构:先升维,经过DW卷积,再降维,中间使用 relu6 激活函数。

relu6 激活函数 

relu激活函数:当输入值为0时,默认值置为0;大于0时,不进行处理。

relu6激活函数:当输入值小于0时,默认值为0;

                          大于0小于6时,不进行处理,

                          大于6时,将值全部置为6.

 倒残差结构图

最后一层采用Linear线性激活。

表格数据中的 t 为扩展因子。

表格中第二层输出为步距的 s 分之一 倍

不是每一个倒残差结构都有shortcut捷径,只有当stride=1且输入特征矩阵与输出特征矩阵的shape相同时才会有shortcut链接。

V2 网络结构参数

t :扩展因子,第一层 1 x 1 的卷积层所采用的卷积核的扩展倍率 t

bottleneck :论文中指的是倒残差结构

步距:后面的数值只是每一个block对应的第一层的bottleneck的步距,剩下的步距都为1.

最后的卷积层相当于全连接层 

五、MobileNet V3 网络

 

论文下载链接https://github.com/WZMIAOMIAO/deep-learning-for-image-processing/tree/master/article_link 

 更新了block

增加了SE注意力机制

注意力机制 

对得到的每一个特征矩阵进行池化处理,再通过两个全连接层得到输出向量。第一个全连接层的channel等于输出特征矩阵的 1/4 ,第二个全连接层的节点个数与输出的节点个数保持一致。

对于输出的向量是是对特诊矩阵的每一个channel分析出了一个权重关系,认为比较重要的channel赋予更大的权重,不是那么重要的channel赋予一个比较小的权重。

NL:非线性激活函数

重新设计耗时层结构 

 用  h - sigmoid 激活函数代替sigmoid函数,得到 h - swish 激活函数

 

 网络结构

NL表示激活函数

exp size 通过1 x 1 升维升到多少维的参数

  • 5
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值