Halcon特征提取

本文详细介绍了图像处理中的关键特征,包括区域特征、灰度值特征和亚像素精度轮廓特征等。区域特征涵盖面积、重心、椭圆参数等;灰度值特征则关注最大灰度值、最小灰度值及平均灰度值等统计特征;亚像素精度轮廓特征是将上述概念应用于XLD轮廓。文章还提供了多种用于计算这些特征的算子。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1:区域特征

1.1 面积

最简单的区域特征是区域的面积。

1.2 重心

重心用来描述区域的位置。

算子area_center用来得到面积和重心。

1.3 椭圆参数

椭圆的长轴半径、短轴半径、以及相对于横轴的夹角,用来定义区域的方位和范围。

长轴半径/短轴半径比:各向异性。在区域缩放时保持不变。用来描述区域的细长程度。

算子elliptic_axis用来获取椭圆参数.

1.4 外接矩形,外接圆

外接矩形分为最小平行轴外接矩形,任意方位最小外接矩形。同椭圆参数类似,任意方位最小外接矩形也可以用来定义区域的方位和范围。

1.5 凸性

定义为区域面积与该区域凸包面积之比。用来测量区域的紧凑程度,值在0~1之间。

算子convexity返回凸性

1.6 轮廓长度

区域的轮廓长度。算子contlength返回轮廓长度

区域的轮廓长度与区域的面积的比值:可以用来测量区域的紧性,紧性与凸性有着类似的用途。

1.7 算子region_features计算区域特征

region_features — Calculate shape features of regions.

Signature

region_features(Regions : : Features : Value)

1.8 算子select_shape根据区域特征选择区域

select_shape — Choose regions with the aid of shape features.

Signature

select_shape(Regions : SelectedRegions : Features, Operation, Min, Max : )

1.9 算子select_shape_std选择指定形状的区域

select_shape_std — Select regions of a given shape.

Signature

select_shape_std(Regions : SelectedRegions : Shape, Percent : )

1.10 区域特征汇总

 

2:灰度值特征

2.1 统计特征

如区域内最大灰度值、最小灰度值,平均灰度值,方差以及标准差。

算子min_max_gray, intensity返回上述特征值

2.2 其他特征

很多区域特征都可以推广到灰度值特征中来。

如:

area_center_gray

elliptic_axis_gray

2.3 算子gray_features计算灰度值特征

gray_features — Calculates gray value features for a set of regions.

Signature

gray_features(Regions, Image : : Features : Value)

2.4 算子select_gray根据灰度特征选择区域

select_gray — Select regions based on gray value features.

Signature

select_gray(Regions, Image : SelectedRegions : Features, Operation, Min, Max : )

2.5 灰度值特征汇总

3:亚像素精度轮廓特征

上述概念直接应用到XLD轮廓,得到XLD轮廓特征。算子往往是在区域特征算子末尾加上_xld

3.1 特征汇总

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值