前言
这里就不赘述卷积神经网络相关内容了,直接通过博主看的一些资料,自己进行了一些整合,大佬绕道。
对于1x1卷积核的作用主要可以归纳为以下几点
- 增加网络深度(增加非线性映射次数)
- 升维/降维
- 跨通道的信息交互
- 减少卷积核参数(简化模型)

1、普通卷积

这里首先展示了一个我们最常见的卷积方式(通道数为1),一个5x5的图怕,通过一个3x3的卷积核提取特征得到一个3x3的结果。如果这里的卷积核是1x1的,那么效果如下

2、1x1卷积核作用
2.1 增加网络深度(增加非线性映射次数)
首先直接从网络深度来理解,1x1 的卷积核虽小,但也是卷积核,加 1 层卷积,网络深度自然会增加。
1x1卷积核,可以在保持feature map尺度不变的(即不损失分辨率)的前提下大幅增加非线性特性(利用后接的非线性激活函数),把网络做的很深。并且1x1卷积核的卷积过程相当于全连接的计算过程,通过加入非线性激活函数,可以增加网络的非线性,使得网络可以表达更复杂的特征。
具体来说,引用一下「frank909」博客的内容:
其实问题往下挖掘,应该是增加

本文详细介绍了1x1卷积核在卷积神经网络中的重要作用,包括增加网络深度、升维/降维、跨通道信息交互和减少参数量。1x1卷积核能够在不改变特征图尺寸的同时增加非线性特性,通过改变通道数实现特征图的维度调整,并有效地减少模型复杂度。此外,1x1卷积核在GoogLeNet和ResNet等深度网络结构中被广泛利用,以降低计算成本并提高模型性能。
最低0.47元/天 解锁文章
1727





