论文:学习用于分子构象生成的梯度场

confGF:Learning Gradient Fields for Molecular Conformation Generation

利用基于深度学习的力场实现小分子的构象生成

好像并不是我想的那样,有一点新意

在这里插入图片描述

Experimentally, such struc-tures are determined by expensive and time-consuming crystallography. Computational approachesbased on Markov chain Monte Carlo (MCMC) or molecular dynamics (MD) (De Vivo et al., 2016)are computationally expensive, especially for large molecule

实验上,这种结构是用昂贵而耗时的晶体学方法确定的。**基于马尔可夫链蒙特卡罗(MCMC)**或分子动力学(MD)的计算方法(De Vivo等人,2016)计算成本很高,特别是对于大分子

proposed a Conditional Variational Graph Autoencoders (CVGAE) for molecular conforma-tion generation. A graph neural network (Gilmer et al., 2017) is first applied to the molecular graphto get the atom representations, based on which 3D coordinates are further generated. One limitationof such an approach is that by directly generating the 3D coordinates of atoms it fails to model therotational and translational invariance of molecular conformations. To address this issue, insteadof generating the 3D coordinates directly, Simm & Hern ́andez-Lobato (2020) recently proposed tofirst model the molecule’s distance geometry

提出了一种用于分子构象生成的条件变分图自动编码器(CVGAE)。 图神经网络 (Gilmer et al., 2017) 首先应用于分子图以获取原子表示,并在此基础上进一步生成 3D 坐标。 这种方法的一个限制是,通过直接生成原子的 3D 坐标,它无法模拟分子构象的旋转和平移不变性。 为了解决这个问题,Simm & Hern ́andez-Lobato (2020) 最近提出首先对分子的距离几何进行建模,而不是直接生成 3D 坐标——它们是旋转和平移不变的——然后生成 通过后处理算法基于距离几何的分子构象。类似于 Mansimovet al。 (2019),将几层图神经网络应用于分子图以学习不同边的表示,这些表示进一步用于独立地生成不同边的距离。 这种方法能够更经常地产生有效的分子构象。

尽管这些新方法取得了巨大进展,但问题仍然非常具有挑战性,远未解决。 首先,每个分子可能具有围绕多个热力学稳定状态的多个稳定构象。 换句话说,分布p(R|G)是非常复杂和多模态的。 需要具有高容量的模型来模拟这种复杂的分布。 其次,现有方法通常应用几层图神经网络来学习节点(或边)的表示,然后根据它们的表示独立地生成 3D 坐标(或距离)。 这种方法必然限于捕获 p(R|G) 的单模态(因为坐标或距离是独立采样的),并且无法对多模态联合分布进行建模,并且图神经网络计算的形式使得难以捕获之间的长期依赖关系 原子,特别是在大分子中

受深度生成模型最近进展的启发,本文提出了一种新颖且有原则的分子几何生成概率框架,解决了上述两个限制。 我们的框架结合了归一化流 (Dinh et al., 2014)基于能量的方法 (LeCun et al., 2006) 的优势,它们具有强大的模型能力来模拟复杂分布,可以灵活地模拟原子之间的远程依赖关系, 并享受高效的抽样和培训程序。 与 Simm & Hern ́andez-Lobato (2020) 的工作类似,我们也首先学习了给定图 G 的距离 d 分布,即 p(d|G),并在给定距离 d 的情况下定义另一个构象分布 R,即 p(R|d ,G)。 具体来说,我们提出了一种新的条件图连续流 (CGCF),用于在分子图 G 上生成距离几何 (d)。 给定一个分子图 G,CGCF 定义了基本分布(例如,多元正态分布)和分子距离几何之间的可逆映射,使用神经常微分方程架构表示的原子上的几乎无限数量的图变换层(Chen 等 等人,2018)。 这种方法在模拟距离几何的复杂分布时具有非常高的灵活性。 一旦生成了分子距离几何图形,我们通过从概率 p(R|d,G) 中搜索进一步生成 3D 坐标 R

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值