【图神经网络论文整理】(一)—— Causal Attention for Interpretable and Generalizable Graph Classification:CAL

本文介绍了KDD2022上发表的《Causal Attention for Interpretable and Generalizable Graph Classification》论文,指出图神经网络在图分类中可能依赖于非因果的捷径特征,导致泛化能力下降。作者提出了因果注意力学习(CAL)策略,通过分离因果图和琐碎图,减少混杂因子影响,增强模型的解释性和泛化性能。实验表明CAL在合成数据集和真实数据集上表现出优越效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述


  • KDD '22: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
  • August 2022
  • Pages 1696–1705
  • 论文地址

本文介绍的论文是中科大王翔教授等人在KDD2022上发表的《Causal Attention for Interpretable and Generalizable Graph Classification》。

作者强调了当前基于注意力和池化的GNN在图分类中的泛化问题,并且提出了一种新的用于图分类的因果注意力学习策略(CAL),使GNN在过滤掉捷径特征的同时利用因果特征,最后在合成数据集和真实数据集上的大量实验证明了CAL的有效性。


🍁 一、背景 🍁

目前大多数图神经网络GNN在图分类这项任务中,遵

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海洋 之心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值