- KDD '22: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
- August 2022
- Pages 1696–1705
- 论文地址
本文介绍的论文是中科大王翔教授等人在KDD2022上发表的《Causal Attention for Interpretable and Generalizable Graph Classification》。
作者强调了当前基于注意力和池化的GNN在图分类中的泛化问题,并且提出了一种新的用于图分类的因果注意力学习策略(CAL),使GNN在过滤掉捷径特征的同时利用因果特征,最后在合成数据集和真实数据集上的大量实验证明了CAL的有效性。
🍁 一、背景 🍁 |
目前大多数图神经网络GNN在图分类这项任务中,遵