文章目录
一、如何减少卷积层参数量
减少卷积层的参数量可以有效地降低模型的计算复杂度、内存消耗,并且有助于加速训练和推理过程。以下是一些减少卷积层参数量的常用方法:
-
使用1x1卷积: 1x1卷积可以用来减少特征通道的数量,从而降低参数量。1x1卷积在通道方向上进行线性组合,可以降低特征的维度,从而降低后续卷积层的计算成本。
-
减少卷积核大小: 使用小尺寸的卷积核可以减少参数量。较小的卷积核能够捕捉更精细的特征,同时降低计算量。
-
减少输入通道: 减少输入特征图的通道数量也会减少后续卷积层的参数量。可以通过使用降维卷积或池化操作来减少通道数。
-
深度可分离卷积: 深度可分离卷积将标准卷积拆分为深度卷积和逐通道的1x1卷积,从而减少