Python实现坐标下降法(Coordinate Descent)

本文档介绍了如何使用原生Python实现坐标下降法,详细阐述了算法原理,并提供了具体的代码实现,包括目标函数的定义、优化过程和可视化。文章适合机器学习初学者,旨在通过实践加深对算法的理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

💥 项目专栏:【Python实现经典机器学习算法】附代码+原理介绍


前言

  • 👑 最近粉丝群中很多朋友私信咨询一些决策树、逻辑回归等机器学习相关的编程问题,为了能更清晰的说明,所以建立了本专栏 专门记录基于原生Python实现一些入门必学的机器学习算法,帮助广大零基础用户达到轻松入门,为了更深刻算法的基本原理,本专栏没有采用第三方库来实现(sklearn),而是采用原生Python自己复现相关算法,从而帮助新手理解算法的内部细节。

  • 👑 本专栏适用人群:🚨🚨🚨 机器学习初学者刚刚接触sklearn的用户群体,专栏将具体讲解如何基于原生Python来实现一些经典机器学习算法,快速让新手小白能够对机器学习算法有更深刻的理解

  • 👑 本专栏内包含基于原生Python从零实现经典机器学习算法,通过自复现帮助新手小白对算法

坐标下降算法(Coordinate Descent Algorithm)是一种优化算法,用于求解无约束最优化问题。其基本思想是将多维优化问题转化为一系列单维优化问题,通过不断更新每个坐标的取值来逼近最优解。 下面是一个简单的用Python实现坐标下降算法: ```python import numpy as np def coordinate_descent(f, initial_x, epsilon=1e-6, max_iter=1000): x = initial_x.copy() num_vars = len(x) iter_count = 0 while iter_count < max_iter: for i in range(num_vars): old_x_i = x[i] gradient = partial_derivative(f, x, i) x[i] -= gradient if np.abs(x[i] - old_x_i) < epsilon: return x iter_count += 1 return x def partial_derivative(f, x, i, delta=1e-6): x_plus_delta = x.copy() x_plus_delta[i] += delta return (f(x_plus_delta) - f(x)) / delta # 示例函数:f(x, y) = x^2 + y^2 def f(x): return x[0]**2 + x[1]**2 # 初始点 initial_x = np.array([1, 1]) # 运行坐标下降算法 result = coordinate_descent(f, initial_x) # 输出结果 print(f"最优解:{result}") ``` 在这个示例代码中,我们首先定义了一个待优化的函数 `f`,然后定义了一个坐标下降算法的主函数 `coordinate_descent`。这个算法会根据给定的初始点和函数,迭代地更新每个坐标的取值,直到达到收敛条件(更新的变化小于阈值)或达到最大迭代次数。最后,我们使用上述函数进行示例测试,并输出结果。 需要注意的是,这只是一个简单的坐标下降算法的实现示例,实际应用中可能需要根据具体问题进行相应的优化和改进。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海洋 之心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值