机器学习Day5 过拟合、正则化及解决过拟合的办法

本文介绍了过拟合和欠拟合的概念,强调了泛化的重要性。提出了通过增加样本数据、特征选择和正则化来解决过拟合的方法,详细解释了正则化在代价函数中的应用,并展示了如何在线性回归和逻辑回归中实施正则化。最后总结了监督学习部分的核心内容。
摘要由CSDN通过智能技术生成

一、过拟合(Overfitting)

什么是欠拟合(underfit, high bias):

说白了就是模型拟合效果不好,无法将值串起来。

什么是过拟合(也可以叫高方差):

就是数据拟合的太完美了,几乎把每个样本数据都串起来了。但是这样带来的问题在于,它不具备良好的泛化能力,而是过拟合了。

泛化(Generalization):若一个模型能从从未见过的数据中做出准确的预测,我们说它能够从训练集泛化到测试集。我们的目标是构建一个泛化精度尽可能高的模型

二、解决过拟合

1. 收集更多的样本数据用于训练和调试(首要工作)

2.观察是否可以使用更少的特征来拟合(特征选择)

3.正则化(Regularization):保留所有的特征,但尽可能让算法缩小特征参数的值。一般对w进行正则化,没必要正则化b的值。

三、带有正则化的代价函数

正则化:

因为不知道那些特征需要缩小,所以惩罚所有的特征,也就是所有的w。通过最小化w的值,来解决过拟合问题。一般不考虑b,因为影响太小了。

具体操作:在代价函数中加上正则化的式子

正则化参数:lambda(有点像学习率)

式子如修改后的最小化代价函数所示:

这样的好处在于,式子里的第一项(均方误差)是在拟合数据,而正则化项是在防止过拟合。

选择的lambda的值体现了相对权衡。也就是说,选择的lambda的值应该是能够最小化均方误差和保持参数w较小,两者同时实现。

四、正则化线性回归

实际上,在最小化代价函数那一步发生了改变而已:因为求偏导后的式子多出来了正则化求偏导后的那一项,其他没什么差别。

五、在逻辑回归中进行正则化

只是把原有的代价函数的式子改成了逻辑回归里的代价函数加上它求偏导后的项。

至此,有监督学习部分已学完。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

qq030928

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值