深度学习Lecture 3 激活函数的选择(ReLu)、Softmax和多标签分类问题

一、ReLu、Leniar activation function、Sigmoid激活函数

Sigmoid(一般用于处理二分类问题的输出层):也就是说,当输出是一个概率,这个概率拿来判断的结果只有0和1的时候才使用它。

Linear activation function(一般用于隐藏层或输入层或输出层):当y可能有正有负的时候就要用它

ReLU:当y只有正的情况的时候用它。

大多数时候我们用这三个就够了,但是现在市面上还有一些其他的激活函数,可以了解一下,但那些只会在某些少数情况的时候比这三个好点。

我们之所以没有用sigmoid在隐藏层中,而使用ReLU的话,是因为sigmoid函数左边和右边都是平的,这样的话会导致在使用梯度下降的时候,我们的训练速度会变慢。

所以为什么我们不能在每个神经元用线性激活函数呢?

因为用了之后,整个模型最后的输出层就是个线性函数,它无法学习东西,也无法实现我们要的效果。

二、多分类问题(multi-class)

定义:指可以有不止两个输出标签的问题(也就是不只有0或1)

解决方式:softmax回归算法(逻辑回归的泛化)

下面是softmax回归算法的计算公式

注意,事实证明,当n=2时,也就是说只有两个输出标签时,softmax最终会变成逻辑回归(尽管参数有所不同,这也是为什么我们说它是逻辑回归的延伸)

举个例子:

softmax的代价函数的式子和其图像:
​​​​​​​ 

三、多标签分类问题(multi-label classification)

举例说明:一张图可能同时出现几个我想要检测的物体 (比如车、人、自行车同时出现,我要同时输出他们三个)

解决方法:
1. 把他们独立看作三个问题去解决(不推荐)

2.训练一个单一的神经网络来同时检测

注意:

多分类最后用的是softmax激活函数,输出是一个值

而多标签分类最后用的是sigmoid激活函数,输出是一个向量(分别代表对应物体匹配的概率)

  • 11
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
SVM(支持向量机)的损失函数和优化实现是通过最大化边际来实现的。SVM的损失函数是基于Hinge Loss的,它衡量了正确分类和错误分类之间的边际。具体来说,对于每个样本,SVM会计算其真实分类的分数和其他可能分类的分数之间的差距。如果这个差距小于一个预先设定的边际(通常为1),则认为这个样本被正确分类。如果差距大于边际,则认为这个样本被错误分类。 SVM的优化目标是找到一个能够最大化边际的超平面,使得正确分类的样本尽可能远离超平面,而错误分类的样本尽可能接近或超过边际。这可以通过求解一个凸优化问题来实现,其中目标是最小化损失函数和正则化项的和。正则化项用于控制模型的复杂度,以防止过拟合。 在优化过程中,可以使用梯度下降等优化算法来更新模型的参数,使得损失函数逐渐减小。通过迭代更新参数,最终可以得到一个能够最大化边际的超平面,从而实现对样本的分类。 总结起来,SVM的损失函数是基于Hinge Loss的,通过最大化边际来实现对样本的分类。优化过程中使用梯度下降等算法来更新模型参数,使得损失函数逐渐减小,最终得到一个能够最大化边际的超平面。\[1\]\[2\] #### 引用[.reference_title] - *1* *2* *3* [Lecture2:损失函数及优化](https://blog.csdn.net/qq_41694024/article/details/128208185)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

qq030928

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值