深度学习Lecture 2 前向传播、Tensorflow及如何在Tensorflow里构建神经网络

一、前向传播

从左到右激活值的传播。就是越靠近输出层,层数越少。

二、如何使用TensorFlow进行神经网络的推理

考虑一个例子,考虑咖啡烹煮的时间(Duration)和温度(Celsius)

给定一个x设为含有两个数据的二维数组,输入为200摄氏度和17分钟。

第一层等于Dense(units=3, activation='sigmoid')

稠密第三层单元的激活值等于sigmoid创建一个隐藏层,这一层里里都有三个神经元在激活函数中,Dense就是这一层的名字。

最后,计算激活值a1。写成代码:

三、Tensorflow中的数据如何表示的

张量是什么:TensorFlow团队创建的一种数据类型,有效存储和执行矩阵运算。从技术上来讲,张量比矩阵更具有一般性,但是可以简单理解为就是矩阵。

Numpy和张量是可以互转的。

四、如何在tensorflow中构建神经网络

利用Sequential函数,将两层输入层连接在一起。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

qq030928

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值