一、前向传播
从左到右激活值的传播。就是越靠近输出层,层数越少。
二、如何使用TensorFlow进行神经网络的推理
考虑一个例子,考虑咖啡烹煮的时间(Duration)和温度(Celsius)
给定一个x设为含有两个数据的二维数组,输入为200摄氏度和17分钟。
第一层等于Dense(units=3, activation='sigmoid')
稠密第三层单元的激活值等于sigmoid创建一个隐藏层,这一层里里都有三个神经元在激活函数中,Dense就是这一层的名字。
最后,计算激活值a1。写成代码:
三、Tensorflow中的数据如何表示的
张量是什么:TensorFlow团队创建的一种数据类型,有效存储和执行矩阵运算。从技术上来讲,张量比矩阵更具有一般性,但是可以简单理解为就是矩阵。
Numpy和张量是可以互转的。
四、如何在tensorflow中构建神经网络
利用Sequential函数,将两层输入层连接在一起。