1019 数字黑洞 (20 分)
给定任一个各位数字不完全相同的 4 位正整数,如果我们先把 4 个数字按非递增排序,再按非递减排序,然后用第 1 个数字减第 2 个数字,将得到一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞”之称的 6174,这个神奇的数字也叫 Kaprekar 常数。
例如,我们从6767开始,将得到
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...
现给定任意 4 位正整数,请编写程序演示到达黑洞的过程。
输入格式:
输入给出一个 (0,10^4) 区间内的正整数 N。
输出格式:
如果 N 的 4 位数字全相等,则在一行内输出 N - N = 0000;否则将计算的每一步在一行内输出,直到 6174 作为差出现,输出格式见样例。注意每个数字按 4 位数格式输出。
输入样例:
6767
输出样例:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
输入样例:
2222
输出样例:
2222 - 2222 = 0000
我的代码
#include <iostream>
#include <algorithm>
using namespace std;
bool cmp1(int a, int b) {
return a > b;
}
bool cmp2(int a, int b) {
return a < b;
}
int num1(int n) {
int a[4];
a[0] = n / 1000;
a[1] = n / 100 % 10;
a[2] = n / 10 % 10;
a[3] = n % 10;
sort(a, a + 4, cmp1);
return a[0] * 1000 + a[1] * 100 + a[2] * 10 + a[3];
}
int num2(int n) {
int a[4];
a[0] = n / 1000;
a[1] = n / 100 % 10;
a[2] = n / 10 % 10;
a[3] = n % 10;
sort(a, a + 4, cmp2);
return a[0] * 1000 + a[1] * 100 + a[2] * 10 + a[3];
}
int main() {
int num;
if (scanf("%d", &num)) {};
int n1 = num1(num);
int n2 = num2(num);
int ans = 0;
if (n1 == n2) {
printf("%04d - %04d = 0000", n1, n2);
return 0;
}
while (ans != 6174) {
ans = n1 - n2;
printf("%04d - %04d = %04d\n", n1, n2, ans);
n1 = num1(ans);
n2 = num2(ans);
}
}