【HTC,Hybrid Task Cascade】Hybrid Task Cascade for Instance Segmentation论文快速了解

文章提出了对CascadeMaskRCNN的三个改进点,包括对bbox回归和mask预测的交替实现,加强mask分支间的信息流以及添加语义分割分支以利用更多上下文信息。这些改进旨在优化实例分割的性能和准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、在Cascade Mask RCNN上的三个改进点

  • 文章中提出:一个成功的实例分割级联的关键在于充分利用检测和分割之间的关系。
  • 三个改进方向如下:

1)对bbox回归和mask预测进行交替的实现,而不是并行的执行
2)直接将mask分支相连,将前一个stage的mask特征送入当前的stage,以增强mask分支之间的信息流
3)添加了一个额外的语义分割分支,并将其融合到bbox分支和mask分支以探索更多的上下文信息

2、网络架构

在这里插入图片描述

  • Cascade Mask RCNN:bbox分支和mask分支都是先将上一个stage的bbox预测作为输入提取ROI特征的,因此相当于是并行执行的。
    在这里插入图片描述
    在这里插入图片描述
  • Interleaved Execution:按照第一个改进方向,进行了如下改进,就是从第二个stage开始,接收前一个stage的bbox作为输入,先预测出当前stage的bbox;再将当前stage的bbox作为mask分支的输入,提取ROI特征去预测mask。这样就实现了交替的预测。下面的gt为1*1的卷积。
    在这里插入图片描述
  • Mask Information Flow:将相邻的mask分支之间相连接,也就是当前stage的mask分支除了如(2)所述的接收当前stage的bbox通过ROI ALign所提取的ROI特征以外,还接收上一个stage的mask分支中的特征。这种设计可以实现不同mask分支之间的直接的信息流。
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
  • Semantic Segmentation Branch:增加了语义分割分支,并将语义特征与bbox和mask分支的特征进一步融合。S为语义分割分支,如下图所示,也将其语义特征进行ROI ALign操作。
    在这里插入图片描述
    在这里插入图片描述
  • 损失函数
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值