构建手写数字识别模型

本文档详细介绍了如何借助Python和PyTorch框架构建手写数字识别的神经网络模型,通过实例演示了从数据预处理到模型训练的全过程。
摘要由CSDN通过智能技术生成

参考https://www.paddlepaddle.org.cn/tutorials/projectdetail/2182045实现手写数字的识别

#加载飞桨和相关类库
import paddle
from paddle.nn import Linear
import paddle.nn.functional as F
import os
import numpy as np
import matplotlib.pyplot as plt
# 设置数据读取器,API自动读取MNIST数据训练集
train_dataset = paddle.vision.datasets.MNIST(mode='train')
train_data0 = np.array(train_dataset[0][0])
train_label_0 = np.array(train_dataset[0][1])

# 显示第一batch的第一个图像
import matplotlib.pyplot as plt
plt.figure("Image") # 图像窗口名称
plt.figure(figsize=(2,2))
plt.imshow(train_data0, cmap=plt.cm.binary)
plt.axis('on') # 关掉坐标轴为 off
plt.title('image') # 图像题目
plt.show()

print("图像数据形状和对应数据为:", train_data0.shape)
print("图像标签形状和对应数据为:", train_label_0.shape, train_label_0)
print("\n打印第一个batch的第一个图像,对应标签数字为{}".format(train_label_0))

在这里插入图片描述

图像数据形状和对应数据为: (28, 28)
图像标签形状和对应数据为: (1,) [5]

打印第一个batch的第一个图像,对应标签数字为[5]
# 定义mnist数据识别网络结构,同房价预测网络
class MNIST(paddle.nn.Layer):
    def __init__(self):
        
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值