街景图片语义分割后像素类别提取,用于计算各种指标。

本文介绍了如何利用预训练的Deeplabv3模型对Cityscapes图像进行语义分割,提供了一种无需训练的解决方案。文章重点在于分享如何快速统计19类像素的数量,包括改进后的代码实现,以及其在不同场景下的应用,如计算绿视率。作者还提到提供相关代码服务,价格在10元以内,建议通过邮件获取以保证及时回复。

语义分割代码见之前博文(免费):deeplabv3+街景图片语义分割,无需训练模型,看不懂也没有影响,直接使用。cityscapes

语义分割之后,如下图,想要统计各类像素所占的比例,用于计算绿视率,天空开阔度等指标,或者计算其他指标。

cityscapes数据集,分割结果19类。

语义分割之后,统计各类像素数量的代码:

结果示例图。

常规提取代码:运行速度比较慢,大概2张/1s。

改进提取代码:(图片多用得到,图片少就普通代码就行了)。能达到60张/s(取决于cpu),并且文件保存时间几乎为0。

不局限于cityscapes数据集,19类。自己只要知道颜色和类别的映射关系,修改

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GGG信

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值