视觉SLAM学习笔记4

变换矩阵与齐次坐标

使用a’=Ra+t表示欧氏空间的旋转和平移的变换关系是非线性的,则当进行多次变化后表达式会变得很复杂,因此引入齐次坐标和变换矩阵重写式
在这里插入图片描述
在三位向量末尾添加1,变成四维向量,称为齐次坐标,旋转和平移都写在一个矩阵里,则变换关系变成线性关系,矩阵T称为变换矩阵
对于齐次坐标,某个点x的每个分量同乘非0常数k,仍表示同一个点,则一个点的具体坐标值不唯一。当最后一项不为1,可把所有坐标除以最后一项,令最后一项为1,得到该点的唯一坐标表示(转换为非齐次坐标)
在这里插入图片描述
此时,表示多次变换就简洁多了
b=T1a,c=T2b
c=T1T2a

对于变换矩阵T,具有特别的结构,左上角为旋转矩阵,右侧为平移向量,左下角为0向量,右下角为1,这种矩阵又称为特殊欧氏群
在这里插入图片描述
同SO(3),求该矩阵的逆表示一个反向变化
在这里插入图片描述
为了保持符号简洁,不引起歧义情况下,不区别齐次坐标和普通坐标的符号,如Ta表示使用齐次坐标,Ra表示使用非齐次坐标,当出现在一个等式中,我们假设齐次坐标得到普通坐标转换

坐标系之间的运动由欧氏变换描述,它由平移和旋转组成。旋转由旋转矩阵SO(3)描述,平移用R3向量描述。如果将平移和旋转放在一个矩阵中,就有变换矩阵SE(3)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jason 20

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值