# 为什么要引入齐次坐标

$x2=x1+tx$
$y2=x2+ty$

$\begin{array}{}\text{(78)}& \left[\begin{array}{c}x2\\ y2\end{array}\right]=\left[\begin{array}{c}x1\\ y1\end{array}\right]+\left[\begin{array}{c}tx\\ ty\end{array}\right]\end{array}$

$\begin{array}{}\text{(79)}& \left[\begin{array}{c}x2\\ y2\end{array}\right]=\left[\begin{array}{cc}{k}_{x}& 0\\ 0& {k}_{y}\end{array}\right]\left[\begin{array}{c}x1\\ y1\end{array}\right]\end{array}$

$\begin{array}{}\text{(370)}& \left[\begin{array}{c}x2\\ y2\end{array}\right]=\left[\begin{array}{cc}cos\theta & -sin\theta \\ sin\theta & cos\theta \end{array}\right]\left[\begin{array}{c}x1\\ y1\end{array}\right]\end{array}$

$\begin{array}{}\text{(371)}& \left[\begin{array}{c}x2\\ y2\end{array}\right]=\left[\begin{array}{cc}0.5& 0\\ 0& 0.5\end{array}\right]\left[\begin{array}{cc}cos45& -sin45\\ sin45& cos45\end{array}\right]\left[\begin{array}{cc}2& 0\\ 0& 2\end{array}\right]\left[\begin{array}{c}x1\\ y1\end{array}\right]\end{array}$

$\begin{array}{}\text{(372)}& \left[\begin{array}{c}x2\\ y2\end{array}\right]=\left[\begin{array}{c}x1\\ y1\end{array}\right]+\left[\begin{array}{c}tx\\ ty\end{array}\right]\end{array}$

$\begin{array}{}\text{(373)}& \left[\begin{array}{c}x2\\ y2\\ 1\end{array}\right]=\left[\begin{array}{ccc}1& 0& tx\\ 0& 1& ty\\ 0& 0& 1\end{array}\right]\left[\begin{array}{c}x1\\ y1\\ 1\end{array}\right]\end{array}$

$\begin{array}{}\text{(374)}& \left[\begin{array}{c}x2\\ y2\\ 1\end{array}\right]=\left[\begin{array}{ccc}{k}_{x}& 0& 0\\ 0& {k}_{y}& 0\\ 0& 0& 1\end{array}\right]\left[\begin{array}{c}x1\\ y1\\ 1\end{array}\right]\end{array}$

$\begin{array}{}\text{(375)}& \left[\begin{array}{c}x2\\ y2\\ 1\end{array}\right]=\left[\begin{array}{ccc}cos\theta & -sin\theta & 0\\ sin\theta & cos\theta & 0\\ 0& 0& 1\end{array}\right]\left[\begin{array}{c}x1\\ y1\\ 1\end{array}\right]\end{array}$