文章通过图解方式详细解释了LLM的工作原理,从基础的条件概率概念开始,说明LLM如何基于上下文预测下一个单词。文章介绍了损失计算(交叉熵损失和负对数似然)的概念,并重点解释了temperature参数如何影响模型的输出多样性和创造性。通过调整temperature值,可以在文本的确定性和多样性之间取得平衡,从而控制模型输出的创造性程度。
在 x(原帖链接见文章末尾) 上看到有人分享一组图解 LLM 工作原理的帖子,内容通俗易懂,就搬运过来汉化一下,和大家一起学习!
分享者是 Akshay,他是一位 AI/ML 工程师,在 x 上的介绍如下图所示:

LLM 工作原理解释
条件概率解释
他提到,在介绍 LLM 之前,需要先了解一下条件概率(conditional probability),应该是与高中、大学学的概率学相关。有一个很形象的例子:
有 14 个人,他们中的一部分人(7 个)喜欢网球、一部分人(8个)喜欢足球、少部分人(3 个)同时喜欢网球和足球、也有极少一部分人(2 个)都不喜欢网球和足球。用图表示如下:

所以如果要表示喜欢网球的人数概率,表示方法为 P(A),结果是 7/14;喜欢足球的人数概率,表示方法为 P(B),结果为 8/14;同时喜欢网球和足球的人数概率,表示方法为 P(A∩B),结果是 3/14;同时表示既不喜欢网球又不喜欢足球的人数概率,结果为 2/14。
那什么条件概率呢?
其实就是在另外一件事情发生的前提下,某件事情发生的概率。比如上面的事件 A 和事件 B,如果要表示在事件 B 发生的前提下,事件 A 发生的概率,那么表示方法是P(A∣B)。
所以,如果要计算一个人在喜欢足球的情况下,还喜欢网球的概率,计算方法为 P(A|B)=P(A∩B)/P(B)=(3/14)/(8/14)=3/8。

再拿阴天和下雨天为例来将条件概率:如果将今天下雨当作事件 A,阴天可能下雨作为事件 B(按照常识,阴天会有下雨的可能),而且事件 B 会影响下雨的预测。所以,阴天的时候就可能会下雨,这个时候就可以说条件概率 P(A|B) 是非常高的。
LLM 预测解释
回到 LLM 上来说,这些模式的任务就是预测下一个出现的单词。这就和前面讲的条件概率类似:如果给定已经出现过的单词,那下一个最可能出现的单词是哪一个?

所以,要预测下一个单词,模型就要根据之前给定的单词(上下文)来为每一个接下来可能出现的单词进行条件概率的计算,条件概率最高的单词就会被作为预测单词所选中。

而 LLM 学习的是一个高维度的单词序列概率分布。这个分布的参数就是经过训练的权重。但是这种概率毕竟是一种预测,并不是实际的结果,所以这个过程中就有一个 损失计算(Loss calculation) 的概念。

以下内容来自 ChatGPT。
Loss calculation(损失计算) 是指模型在预测过程中产生的误差的度量,通常用来衡量模型预测的结果与实际目标之间的差异。通过最小化损失函数,模型能够不断优化其参数,以提高对新数据的预测能力。
上图中提到的 Cross-entropy loss 和 Negative log-likehood 是两种损失函数。
- • Cross-entropy loss
Cross-entropy loss 指交叉墒损失,用来度量模型预测的概率分布与真实标签(即实际单词)间的差异。
交叉墒 用于计算两个概率分布之间的差异。在语言模型中,一个概率分布是模型对每个可能的下一个单词的预测概率,另一个是实际的单词标签的“真实分布”(通常是一个one-hot分布,即正确单词的概率为1,其他为0)。交叉熵损失的计算公式如下:

- • Negative Log-Likelihood
Negative Log-Likelihood,负对数似然,简称 NLL。是机器学习中常用的一个损失函数,尤其在概率模型和分类问题中广泛应用。
以上内容来自 ChatGPT。
这种概率预测并选择最有可能的单词会带来一个问题如果总是选择可能性最大的单词,那么结果就是重复性的,这就让 LLM 显得缺乏创造性。
所以,这里面就有一个 temperature(温度) 的概念产生。
temperature(温度)
LLM 中,temperature(温度)是一个调整模型输出概率分布的超参数,通常用于文本生成和采样。它影响生成文本时的多样性和创造性,以及模型在选择下一个单词时的随机性。
因为在 LLM 中,大模型通常会生成一个概率分布,表示下一词在给定上下文下出现的可能性。例如,模型可能会为每个可能的下一个单词生成一个概率,就像前面图中所画的:
上下文是“The boy went to the“,下一个单词可能是“Cafe、Hospital、Playground、Park、School“,这几个单独对应的概率是“0.1、0.05、0.4、0.15、0.3“。
temperature 控制如何从概率分布进行采样:
- • Low temperature(低温度,比如 0.1 ~ 0.5):模型的输出会更加具有确定性,也就是更倾向于选择概率较高的单词,此时生成的文本更连贯、理性,内容更“保守”,但是也可能缺乏多样性和创意。
- • High temperature(高温度,比如 0.8 ~ 1.0):模型的输出会更加随机,也就使得低概率的单词有更大的机会被选中。这会增加生成文本的多样性和创造性,但是也可能导致输出不那么流畅或不太符合上下文。
temperature 是通过使用 softmax 函数来调整每个词的 logits(即原始的未经过归一化的分数)来对大模型的输出进行影响的。
softmax 函数是一个激活函数,用来将向量中的每个值转换成一个概率分布。其输出的每个值都会被转换成一个介于 0 和 1 之间的概率,并且所有输出的概率之和等于 1。
随后,作者给了两个不同 temperature 时候的示例来说明差别,第一张图是 low temperature 的,第二张图是 high temperature 的。


所以 LLM 并不是选择最佳(概率最大)的 token,而是对预测进行采样。所以,概率最高的 token 也有可能不会被选中。

所以,在 softmax 函数中,温度引入了一些调整,反过来这种调整又影响了采样过程。

最后作者给了一个很直观的代码示例来对 temperature 对采样的影响:

看来要学习 LLM,还需要深入学习大学的概率分布、统计、线性相关的课程啊。
普通人如何抓住AI大模型的风口?
为什么要学习大模型?
在DeepSeek大模型热潮带动下,“人工智能+”赋能各产业升级提速。随着人工智能技术加速渗透产业,AI人才争夺战正进入白热化阶段。如今近**60%的高科技企业已将AI人才纳入核心招聘目标,**其创新驱动发展的特性决定了对AI人才的刚性需求,远超金融(40.1%)和专业服务业(26.7%)。餐饮/酒店/旅游业核心岗位以人工服务为主,多数企业更倾向于维持现有服务模式,对AI人才吸纳能力相对有限。

这些数字背后,是产业对AI能力的迫切渴求:互联网企业用大模型优化推荐算法,制造业靠AI提升生产效率,医疗行业借助大模型辅助诊断……而餐饮、酒店等以人工服务为核心的领域,因业务特性更依赖线下体验,对AI人才的吸纳能力相对有限。显然,AI技能已成为职场“加分项”乃至“必需品”,越早掌握,越能占据职业竞争的主动权
随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:

人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!
如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!
大模型全套学习资料领取
这里我整理了一份AI大模型入门到进阶全套学习包,包含学习路线+实战案例+视频+书籍PDF+面试题+DeepSeek部署包和技巧,需要的小伙伴文在下方免费领取哦,真诚无偿分享!!!
vx扫描下方二维码即可

部分资料展示
一、 AI大模型学习路线图
这份路线图以“阶段性目标+重点突破方向”为核心,从基础认知(AI大模型核心概念)到技能进阶(模型应用开发),再到实战落地(行业解决方案),每一步都标注了学习周期和核心资源,帮你清晰规划成长路径。

二、 全套AI大模型应用开发视频教程
从入门到进阶这里都有,跟着老师学习事半功倍。

三、 大模型学习书籍&文档
收录《从零做大模型》《动手做AI Agent》等经典著作,搭配阿里云、腾讯云官方技术白皮书,帮你夯实理论基础。

四、大模型大厂面试真题
整理了百度、阿里、字节等企业近三年的AI大模型岗位面试题,涵盖基础理论、技术实操、项目经验等维度,每道题都配有详细解析和答题思路,帮你针对性提升面试竞争力。

适用人群

第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

1222

被折叠的 条评论
为什么被折叠?



