研究生学习机器学习ML、深度学习DL的规划
保上研之后也没有很好规划自己的学习路线,看到b站上的一位清华博士讲述他本科也是机械,跨考计算机后的学习路线,所以记录下来,从现在开始按照规划来一点一点地做好。
-
掌握python(推荐一周)
1.1 面向对象编程
廖雪峰python网站: https://www.liaoxuefeng.com
1.2 数据分析Numpy
numpy 100题: https://www.yanxishe.com/columnDetail/24784
1.3数据分析pandas
pandas 100题: https://www.yanxishe.com/columnDetail/17112 -
机器学习、深度学习(一学期)
2.1 cs229斯坦福机器学习官网历年课程 notes和录像 https://cs229.stanford.edu/;(比较偏数学)
2.2 李宏毅老师深度学习课程录像,历年课件和作业代码 https://speech.ee.ntu.edu.tw/~hylee/ml/2022-spring.php (全网最全最好中文学习材料,最推荐)
2.3 机器学习公式推导的话,B站上的shuhuai的白板系列
2.4 李沐老师的《动手学深度学习》 -
找到自己感兴趣的研究方向(整个研究生生涯的80%时间)
-
研究常用工具
a. VSCODE remote ssh插件可以直接链接服务器;
b. arxiv可以下载论文的latex版本,在Download -> Other formats里,