【2024年更新计划】matlab相关机器学习应用研究计划及进程

该研究计划涵盖了MATLAB中各种机器学习和时间序列预测方法的应用,包括LSTM、ARIMA、SARIMA、XGBoost、CatBoost、AdaboostLSTMAttention等,涉及回归、分类、插值和敏感性分析等领域,并进行了模型的对比和GUI封装工作。
摘要由CSDN通过智能技术生成

【2024年更新计划】matlab相关机器学习应用研究计划及进程

欢迎大家在评论区互动,可优先研究大家疑惑点较多的领域或方向。

研究计划

1、3月份计划
【已完成】sobol结合机器学习敏感性分析
【已完成】LSTM多输入单输出预测未来
【已完成】数据抽样方法合集(sobol 拉丁超立方)
【已完成】多列时间序列多步预测未来
【已完成】回归预测模型整理
【已完成】lightgbm
【已完成】abcboost
【已完成】代表性样本选择方法合集
【已完成】特征选择方法合集补充
【已完成】数据抽样方法合集
【已完成】sarima arima时间序列预测含预测未来
1.LSTM回归预测(应用于单调递增/递减数据)
2.回归预测/时间序列/分类预测模型整理
3.sarima arima
4. lstm预测未来解决时间滞后

2、4月份计划

  1. 多种注意力机制回归预测对比
    2. ARIMA时间序列预测最优版本
  2. LSTM与进化算法结合整理
  3. 好看的LSTM等GUI封装
  4. 回归模型

一、区间/分位数预测

【已完成】lasso分位数回归
1.lasso分位数回归
2.CNN-LSTM分位数回归
3.Adaboost LstmAttention 分位数回归
4.ARIMA不同思路置信区间预测

二、回归/时间序列预测

【已完成】xgboost多输入多输出回归预测
【已完成】Catboost回归
【已完成】LSTM峰值检测
【已完成】GAN回归预测
【已完成】KNN时间序列预测
【已完成】GWO-GMDH时间序列预测
【已完成】LSTM单列数据滑动窗口预测未来
【已完成】LSTM结合进化算法优化(增加优化层数、选择单双向等功能,结果稳定已操作)
【已完成】SVR输入新数据预测
【已完成】LSTM多输入单输出预测未来
1.Catboost回归
2.LSTM结合进化算法优化(增加优化层数、选择单双向等功能,结果稳定已操作)
3.LSTM多输入单输出预测未来
4.LSTM单列数据滑动窗口预测未来
5.SVR输入新数据预测
6.LSTM回归预测(应用于单调递增/递减数据)
7.LSTM峰值检测
8.CNN非工具箱输入新数据预测
9.GAN回归预测

三、分类预测

【已完成】xgboost多分类
【已完成】ssa-xgboost多分类

1.xgboost多分类

四、进化算法

【已完成】2023年进化算法不同优化思路对比

1.2023年进化算法不同优化思路对比

五、敏感性分析

【已完成】sobol
1.sobol

六、插值

【已完成】LSTM / ANN中间插值APP。
【已完成】五种方法中间插值,空值/0值插值。

1.复杂数据插值运行程序(中间插值,空值/0值插值 ,首尾插值)

七、GUI封装

1.贝叶斯优化神经网络算法封装+GUI界面模板
2.多进化算法优化LSTM分类GUI
3.ARIMA封装(验证+预测未来+滚动预测更新模型)
4.敏感性分析方法封装+GUI
5.万能插值GUI

八、集成

【已完成】adaboost四弱分类器集成多分类。
1.多种模型集成对比

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

随风飘摇的土木狗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值