线性系统粗浅认识——第二次作业

线性系统粗浅认识——第二次作业


声明:华南理工大学 线性系统作业 苏老师 本人特别菜,不研究相关的方向,差点挂科,这个作业的内容仅供交流。

第二次作业

题目

针对一个两阶线性系统,分析其零输入响应的特点,给出一组解答的基底,用仿真说明其特点。

解答思路

对一个具体的二阶的电路系统,求解零输入响应,给定一组基底,分析零输入响应的特点,利用MATLAB仿真验证零输入响应的特点。

系统的描述

设各组成元件的参数值为已知,取电源电压 e ( t ) e(t) e(t)为输入变量,将电容电压 u c {u_c} uc和电容电流 i L {i_L} iL作为输出。
在这里插入图片描述

图1 电路原理图

计算

回路方程的计算:将电容电压 u c {u_c} uc和电感电流 i L {i_L} iL作为状态变量,根据回路基尔霍夫定律,得到
u c + R 2 C d u c d t = L d i L d t {u_c} + {R_2}C\frac{{d{u_c}}}{{dt}} = L\frac{{d{i_L}}}{{dt}} uc+R2Cdtduc=LdtdiL
( C d u c d t + i L ) R 1 + L d i L d t = e ( t ) (C\frac{{d{u_c}}}{{dt}} + {i_L}){R_1} + L\frac{{d{i_L}}}{{dt}} = e(t) (Cdtduc+iL)R1+LdtdiL=e(t)

转化为状态方程和输出方程的形式为:
u ˙ c = ( − 1 ( R 2 + R 1 ) C ) u c + ( − R 1 ( R 2 + R 1 ) C ) i L + ( 1 ( R 1 + R 2 ) C ) e ( t ) {\dot u_c} = ( - \frac{1}{{({R_2} + {R_1})C}}){u_c} + ( - \frac{{{R_1}}}{{({R_2} + {R_1})C}}){i_L} + (\frac{1}{{({R_1} + {R_2})C}})e(t) u˙c=((R2+R1)C1)uc+((R2+R1)CR1)iL+((R1+R2)C1)e(t)
i ˙ L = ( R 1 ( R 1 + R 2 ) L ) u c + ( − R 1 R 2 ( R 1 + R 2 ) L ) i L + ( R 2 ( R 1 + R 2 ) L ) e ( t ) {\dot i_L} = (\frac{{{R_1}}}{{({R_1} + {R_2})L}}){u_c} + ( - \frac{{{R_1}{R_2}}}{{({R_1} + {R_2})L}}){i_L} + (\frac{{{R_2}}}{{({R_1} + {R_2})L}})e(t) i˙L=((R1+R2)LR1)uc+((R1+R2)LR1R2)iL+((R1+R2)LR2)e(t)
引入参数矩阵的表示:

在这里插入图片描述

状态矩阵和输出方程可以表达为:
在这里插入图片描述

根据状态方程求解该系统的零输入响应,为了方便求解我们设 R 1 = 200 k Ω {R_1} = {\rm{2}}00k\Omega R1=200kΩ R 2 = 800 k Ω {R_2} = {\rm{800}}k\Omega R2=800kΩ C = 1 0 − 6 F C = {10^{ - 6}}F C=106F L = 1 × 1 0 − 6 H L = 1 \times {\rm{1}}{{\rm{0}}^{{\rm{ - 6}}}}H L=1×106H
所以
在这里插入图片描述

两个特征值 λ 1 = − 1 . 25 , λ 2 = − 1 . 6 × 1 0 11 {\lambda _{\rm{1}}}{\rm{ = - 1}}{\rm{.25,}}{\lambda _{\rm{2}}}{\rm{ = - 1}}{\rm{.6}} \times {\rm{1}}{{\rm{0}}^{{\rm{11}}}} λ1=1.25,λ2=1.6×1011对应的特征向量分别为

在这里插入图片描述

将初始状态分解
在这里插入图片描述

我们将
在这里插入图片描述

作为一组基底去表示初始状态,初始状态可以用 v 1 {v_1} v1 , v 2 {v_2} v2线性表示,系数分别为 α 1 = ( u c ( t 0 ) − 1.25 × 1 0 − 6 i L ( t 0 ) ) {\alpha _1} = ({u_c}({t_0}) - 1.25 \times {10^{ - 6}}{i_L}({t_0})) α1=(uc(t0)1.25×106iL(t0)) α 2 = ( − 1.25 × 1 0 − 6 u c ( t 0 ) + i L ( t 0 ) ) {\alpha _2} = ( - 1.25 \times {10^{ - 6}}{u_c}({t_0}) + {i_L}({t_0})) α2=(1.25×106uc(t0)+iL(t0))
将零输入响应分解:
在这里插入图片描述

从上述分解的结果中可以得到,零输入响应的结果是:
x ( t ) = α 1 e λ 1 t v 1 + α 2 e λ 2 t v 2 x(t) = {\alpha _1}{e^{{\lambda _1}t}}{v_1} + {\alpha _2}{e^{{\lambda _2}t}}{v_2} x(t)=α1eλ1tv1+α2eλ2tv2

分析可以得到两阶线性系统的零输入响应特点
当初始状态可以用 x ( t 0 ) = α 1 v 1 + α 2 v 2 x({t_0}) = {\alpha _1}{v_1} + {\alpha _2}{v_2} x(t0)=α1v1+α2v2 A A A对应的特征向量 v 1 v_1 v1 v 2 v_2 v2,对应的特征根 λ 1 , λ 2 {\lambda _1},{\lambda _2} λ1,λ2 ,零输入响应可以表示为 x ( t ) = α 1 e λ 1 t v 1 + α 2 e λ 2 t v 2 x(t) = {\alpha _1}{e^{{\lambda _1}t}}{v_1} + {\alpha _2}{e^{{\lambda _2}t}}{v_2} x(t)=α1eλ1tv1+α2eλ2tv2
设初始电压 u c = 100000 V {u_c} = 100000V uc=100000V i L = 0.01 A {i_L} = 0.01A iL=0.01A t 0 = 0 {t_0} = 0 t0=0 ,图中直接用实线表示
设初始电压 u c = 300000 V {u_c} = 300000V uc=300000V i L = 0.03 A {i_L} = 0.03A iL=0.03A t 0 = 0 {t_0} = 0 t0=0 ,图中用x表示
设初始电压 u c = 500000 V {u_c} = 500000V uc=500000V i L = 0.05 A {i_L} = 0.05A iL=0.05A t 0 = 0 {t_0} = 0 t0=0 ,图中用。表示
带入计算响应,画图可以得到:
在这里插入图片描述

图2 电感电流计算结果画图

在这里插入图片描述

图3 电容电压计算结果画图

电路仿真

设初始电压 u c = 100000 V {u_c} = 100000V uc=100000V i L = 0.01 A {i_L} = 0.01A iL=0.01A t 0 = 0 {t_0} = 0 t0=0 , 进行MATLAB仿真,选择仿真时间7s。设初始电压 u c = 300000 V {u_c} = 300000V uc=300000V i L = 0.03 A {i_L} = 0.03A iL=0.03A t 0 = 0 {t_0} = 0 t0=0 , 进行MATLAB仿真,选择仿真时间7s。设初始电压 u c = 500000 V {u_c} = 500000V uc=500000V i L = 0.05 A {i_L} = 0.05A iL=0.05A t 0 = 0 {t_0} = 0 t0=0 , 进行MATLAB仿真,选择仿真时间7s。
在这里插入图片描述

图4 MTALB电路仿真内部设计图

在这里插入图片描述

图5 MATLAB仿真总图

仿真的结果如下:
在这里插入图片描述

图6 电容两端电压仿真结果

在这里插入图片描述

图7 电感电流仿真结果

从图中可以看出零输入相应输出和初始状态成正比和计算的结果相符,从示波器的仿真结果也可以看出仿真的结果和计算画图的结果基本一致。
验证:
取仿真 t = 1 s t = 1s t=1s时,从仿真示波器结果中读取
i L _ 1 ( 1 ) = 0 . 036759 {i_{L\_1}}(1) = {\rm{0}}{\rm{.036759}} iL_1(1)=0.036759 i L _ 1 ( 1 ) = 0 . 10645 {i_{L\_1}}(1) = {\rm{0}}{\rm{.10645}} iL_1(1)=0.10645 i L _ 1 ( 1 ) = 0 . 17786 {i_{L\_1}}(1) = {\rm{0}}{\rm{.17786}} iL_1(1)=0.17786
u c _ 1 ( 1 ) = 28419.1483 {u_{c\_1}}(1) = 28419.1483 uc_1(1)=28419.1483 , u c _ 2 ( 1 ) = 85367 . 6259 {u_{c\_2}}(1) = {\rm{85367}}{\rm{.6259}} uc_2(1)=85367.6259 u c _ 3 ( 1 ) = 142885 . 5883 {u_{c\_3}}(1) = {\rm{142885}}{\rm{.5883}} uc_3(1)=142885.5883
将数值代入验证这些数值都可以用基底线性表示。
例如:
在这里插入图片描述

因此电路仿真也基本可以验证二阶线性系统零输入响应的特点,当初始状态可以用 x ( t 0 ) = α 1 v 1 + α 2 v 2 x({t_0}) = {\alpha _1}{v_1} + {\alpha _2}{v_2} x(t0)=α1v1+α2v2, 对应的特征向量 v 1 v_1 v1 v 2 v_2 v2 ,对应的特征根 λ 1 , λ 2 {\lambda _1},{\lambda _2} λ1,λ2 ,零输入响应可以表示为 x ( t ) = α 1 e λ 1 t v 1 + α 2 e λ 2 t v 2 x(t) = {\alpha _1}{e^{{\lambda _1}t}}{v_1} + {\alpha _2}{e^{{\lambda _2}t}}{v_2} x(t)=α1eλ1tv1+α2eλ2tv2

附录

%%%计算响应画图的代码%%%%%
figure
x=linspace(0,7,100);
y1=(exp(-1.25x)(1105-1.25*10-60.01)+1.2510-6*exp(-1.6*1011x)(-1.2510-6*1*105+0.01));
y2=(exp(-1.25x)(5105-1.25*10-60.05)+1.2510-6*exp(-1.6*1011x)(-1.2510-6*5*105+0.05));
y3=(exp(-1.25x)(3105-1.25*10-60.03)+1.2510-6*exp(-1.6*1011x)(-1.2510-6*3*105+0.03));
plot(x,y1,‘b:’,x,y2,’-o’,x,y3,’-rx’);
xlabel(‘t/s’)
ylabel(‘U_c/V’)
figure
x=linspace(0,7,100);
y1=1.2510-6*(exp(-1.25*x)*(1*105-1.2510-6*0.01)+exp(-1.6*1011x)(-1.2510-6*1*105+0.01));
y2=1.25
10-6*(exp(-1.25*x)*(5*105-1.2510-6*0.05)+exp(-1.6*1011x)(-1.2510-6*5*105+0.05));
y3=1.2510-6*(exp(-1.25*x)*(3*105-1.2510-6*0.03)+exp(-1.6*1011x)(-1.25*10-6*3*105+0.03));
plot(x,y1,‘b:’,x,y2,’-o’,x,y3,’-rx’);
xlabel(‘t/s’)
ylabel(‘i_L/A’)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值