NumPy(上)

Numpy(上)

Numpy最重要的一个特点就是支持N维数数组对象ndarray。

生成numpy数组

1.利用array()方法
在这里插入图片描述arr1= [1. 2.1 2. 3. ]

2.利用特定函数,比如np.arange()
在这里插入图片描述arr2= [0 1 2 3 4 5 6 7 8 9]
arange(start,stop,step,dtype),start为起始值,默认为0,stop为终止值,取值区间左闭右开,step为步长,默认值为1
![在这里插入图片描述](https://img-blog.csdnimg.cn/2021060120103565.png
arr2= [[0 1 2 3 4]
[5 6 7 8 9]
在这里插入图片描述arr2= [[[ 0 1 2 3 4]
[ 5 6 7 8 9]]

[[10 11 12 13 14]
[15 16 17 18 19]]]两通道三行五列

Numpy 数组相关函数

1.np.linspace(start,stop,number)函数,在指定区间内生成制定个数的数组(取值区间为闭区间,第三个参数时将上下限之间均匀等分的个数)
在这里插入图片描述a= [ 1. 3.25 5.5 7.75 10. ]
2.np.zeros()
在这里插入图片描述a= [[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]
3.np.ones()
在这里插入图片描述a= [[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]]
4.np.zeros_lile()和np.ones_lile()表示借用给定数组的类型、尺寸(即维度信息)

NumPy的运算:元素对元素

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值