基于知识图谱的问答系统 论文总结

本文介绍了如何构建基于知识图谱的军事知识问答系统。使用Scrapy爬取并处理数据,建立领域本体,通过人工和自动方法构建本体。采用KNN算法进行实体分类,BiLSTM-CRF识别实体,PCNN抽取关系构建军事知识图谱。最终利用Neo4j存储数据,实现智能查询和问答功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考文献:
[1]王震南,董宝良,田飞.基于知识图谱的军事知识问答系统设计[J].信息技术,2020,44(12):121-124+128.
[2]薛坤. 面向军事领域的知识图谱构建与应用研究[D].大连理工大学,2020.
目前,知识图谱已为多个方向和领域的产品研发及应用提供了技术支持,各个方面取得的成果如图所示。在这里插入图片描述

本文基于知识图谱的军事问答系统流程如下:
首先,利用爬虫框架Scrapy从互动百科、环球军事网等网站采集结构化和非结构化数据,并进行数据的处理与完善补充,然后基于这些数据的分类和各要素之间的内在关系进行了领域本体建模。

(本体指的是知识图谱中对知识数据描述和定义的“元”数据,能够以一种统一的三元组格式表示实例型数据和描述型数据)

本体的构建方法分为人工构建自动构建两种方式,人工构建需要确定领域及任务、体系复用、罗列要素、确定分裂体系、定义属性及关系和定义约束,因为在本体构建的进程中,会加深对知识的认知,需要退回到上一个阶段或者更早的阶段进行修改;自动构建就是自动的从数据种学习本体。

其次,利用K最近邻算法(选取测试数据距离训练集中每一个数据的距离中最小的K个点)进行军事实体分类,构建军事实体库。
采用BiLSTM-CRF算法完成军事实体识别任务ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值