深度学习】各种注意力机制:encoder-decoder,self-attention,multi-head attention的区别

【深度学习】各种注意力机制:encoder-decoder,self-attention,multi-head attention的区别

转载 各种注意力机制

在这里插入图片描述
论文 :https://arxiv.org/abs/2105.02358

代码:https://github.com/MenghaoGuo/-EANet

本次更新主要包含了三个方面:

加入了 multi-head external attention 机制,multi-head external attention 也可以使用两个线性层实现,由于有了 multi-head external attention 结构,我们实现了一个 MLP 结构,我们把它叫做 EAMLP。

补充了一个 ablation study 的实验以及一些分析,可以更清楚的理解这种 external attention 机制。

补充了 COCO 上的 object detection 和 instance segmentation 的实验和 Tiny ImageNet 上的生成实验。现在已经在图像分类、检测、分割、实例分割、图像生成、点云的分割和分割上证明了 external attention 的有效性。
在这里插入图片描述
其他见原文:转载-剩下部分写的非常好

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值