飞桨学习篇(8.19)

8.19学习笔记

1.激活函数:在卷积或者全连接这样的线性操作之后,会加上一个非线性的函数,作用于每一个神经元的输出上从而实现非线性变换

1)Sigmoid

2)ReLU

 

2.批归一化BatchNorm:提升数值的稳定性

对中间层的输出做标准化,可以保证在网络学习的过程中,网络层的输出具有稳定性的分布

快速学习;降低模型对初始值的敏感性;从一定程度上抑制过拟合

模型收敛:需要稳定的数据分布

输入数据和中间层进行标准化

 

 

 

3.丢弃法Dropout:抑制过拟合的方法

训练阶段:每次随机删除一部分神经元,不向前传播所携带的信息,每次是不同的模型学习

测试阶段:向前传播所有神经元的信息,相当于让这些不同的模型一起工作

两种解决方法:

  1. downgrade_in_infer(paddle默认)训练时随机丢弃一部分神经元,预测不丢弃神经元,但把他们数值变小
  2. upscale_in_train 训练时随机丢弃一部分神经元,但是把保留的那些神经元数值放大,预测时原样输出所有神经元的信息
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值