机器学习(二)

3.分类算法

3.1 sklearn转换器和估计器

3.1.1 转换器

特征工程的接口被称为转换器,其中转换器调用有这么几种形式:

  • fit_transform
  • fit
  • transform

3.1.2 估计器(在sklearn实现机器学习算法)

在sklearn里面,估计器(estimator)是一类实现了算法的API。

  • 用于分类的估计器:
    • sklearn.neighbors KNN算法
    • sklearn.naive_bayes 贝叶斯
    • sklearn.linear_model.LogisticRegression 逻辑回归
    • sklearn.tree 决策树与随机森林
  • 用于回归的估计器:
    • sklearn.linear_model.LinearRegression 线性回归
    • sklearn.linear_model.Ridge 岭回归
  • 用于无监督学习的估计器
    • sklearn.cluster.KMeans 聚类

如何使用?

  1. 实例化一个estimator.
  2. estimator.fit(x_train , y_train) 生成模型
  3. 模型评估:
    • 直接比对真实值和预测值
      • y_predict = estimator.predict(x_test)
      • y_test == y_predict
    • 计算准确率
      • estimator.score(x_test,y_test)

3.2 K-近邻算法

3.2.1 什么是K-近邻算法

  1. 核心思想:根据你的”邻居“来推断出你的类别。

  2. 定义:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于一个类别,则该样本也属于这个类别。

    其中k值

    • 不能太小,容易受到异常值的影响。
    • 不能太大,会受到样本不均衡的影响。
  3. 如何计算距离:

    • 欧式距离
    • 曼哈顿距离
    • 闵可夫斯基距离

3.2.2 K-近邻算法API

sklearn.neighbors.KNeighborsClassifier(n_neighbors = 5,algorithm = 'auto')
	#  n_neighbors : int, default=5 Number of neighbors to use by default for :meth:`kneighbors` queries.
    # alogrithm : {'auto','ball_tree','kd_tree','brute'} 可选用计算最近邻居的算法
    	# algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, default='auto'
        # Algorithm used to compute the nearest neighbors:

        # - 'ball_tree' will use :class:`BallTree`
        # - 'kd_tree' will use :class:`KDTree`
        # - 'brute' will use a brute-force search.
        # - 'auto' will attempt to decide the most appropriate algorithm
        #   based on the values passed to :meth:`fit` method.

        # Note: fitting on sparse input will override the setting of
        # this parameter, using brute force.

3.2.3 案例:鸢尾花种类预测

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier


def neighbor_demo():
    """
    KNN算法进行鸢尾花种类预测
    :return:
    """
    # 1. 导入数据
    data = load_iris()
    # 2. 划分数据集
    x_train, x_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.25, random_state=10)
    # random_state可以保证每次运行结果相同
    # 3. 标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)  # 测试集要用训练集的标准差和均值进行标准化,不然两者就不能投射到一块,后续无法进行模型评估
    # 4. 模型训练
    estimator = KNeighborsClassifier(n_neighbors=3)
    estimator.fit(x_train, y_train)
    # 5. 模型评估
    # 方法1: 直接对比真实值和预测值
    y_predict = estimator.predict(x_test)
    print("y_predict:\n", y_predict)
    print("直接对比真实值和预测值:\n", y_test == y_predict)
    # 方法2: 计算准确率
    score = estimator.score(x_test, y_test)
    print("准确率:\n", score)
    return None


if __name__ == '__main__':
    neighbor_demo()

3.2.4 K-近邻总结

  • 优点:简单、易于理解、易于实现、无需训练(KNN 是一种懒惰学习(lazy learning)算法,这意味着它在训练阶段并不构建模型,而是在测试阶段才进行计算。)
  • 缺点:
    • 懒惰算法,对测试样本分类时计算量大,内存开销大
    • 必须指定k值,k值选择不当则分类精度不能保证
  • 使用场景:小数据场景,几千~几万样本,具体场景具体业务去测试

3.3 模型选择与调优

3.3.1 交叉验证(cross vaildation)

交叉验证:将拿到的训练数据,分为训练和验证集。以下图为例:将数据分为4份,其中一份作为验证集。然后经过4次(组)的测试,每次都更换不同的验证集。即得到4组模型的结果,取平均值作为最终结果。又称为4折交叉验证。

在这里插入图片描述

交叉验证目的:为了让被评估的模型更加准确可信。

3.3.2 超参数搜索-网络搜索(Grid Search)

  1. 通常情况下,有很多参数是需要手动指定的,这种叫超参数。但是手动过程繁琐,所以需要对模型预设几种超参数组合。每组超参数都采用交叉验证来进行评估。最后选出最优参数组合建立模型。

  2. 模型的选择与调优API

    • sklearn.model_selection.GridSearchCV(estimator,param_grid = None,cv = None)
      • 对估计器的指定参数值进行详尽搜索
      • estimator : 估计器对象
      • param_grid : 估计器参数(dict) {‘n_neighbors’:[1,3,5]}
      • cv : 指定几折交叉验证
      • score() : 准确率
    • 结果分析:
      • 最佳参数 :best_params_
      • 最佳结果 : best_score_
      • 最佳估计器 :best_estimator_
      • 交叉验证结果 : cv_results_

3.3.3 鸢尾花案例增加K值调优

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import GridSearchCV


def neighbor_demo():
    """
    KNN算法进行鸢尾花种类预测
    :return:
    """
    # 1. 导入数据
    data = load_iris()
    # 2. 划分数据集
    x_train, x_test, y_train, y_test = train_test_split(data.data, data.target, random_state=10)
    # random_state可以保证每次运行结果相同
    # 3. 标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)  # 测试集要用训练集的标准差和均值进行标准化,不然两者就不能投射到一块,后续无法进行模型评估
    # 4. 模型训练
    estimator = KNeighborsClassifier()

    # 5. 参数调优
    param_dict = {"n_neighbors": [1, 3, 5, 7, 9, 11, 13, 15]}
    estimator = GridSearchCV(estimator, param_grid=param_dict, cv=5)  # 返回拟合估计器实例
    estimator.fit(x_train, y_train)
    # 5. 模型评估
    # 方法1: 直接对比真实值和预测值
    y_predict = estimator.predict(x_test)
    print("y_predict:\n", y_predict)
    print("直接对比真实值和预测值:\n", y_test == y_predict)
    # 方法2: 计算准确率
    score = estimator.score(x_test, y_test)
    print("准确率:\n", score)
    # 最佳参数
    print("最佳参数:\n", estimator.best_params_)
    print("最佳结果:\n", estimator.best_score_)
    print("最佳模型:\n", estimator.best_estimator_)
    print("交叉验证结果:\n", estimator.cv_results_)
    return None


if __name__ == '__main__':
    neighbor_demo()

3.4 朴素贝叶斯算法

朴素贝叶斯算法 = 朴素(假设特征与特征之间是相互独立的) + 贝叶斯(概率里面的贝叶斯公式)

常应用于文本分类

3.4.1 复习概率

  • 联合概率:包含多个条件,且所有条件同时成立的概率。 记作:P(A,B)
  • 条件概率:就是事件A在另外一个事件B已经发生条件下的发生概率。 记作:P(A | B)
  • 相互独立:如果P(A,B) = P(A) * p(B),则称事件A与事件B相互独立。
  • 贝叶斯公式:
    在这里插入图片描述

3.4.2 应用于文章分类

在这里插入图片描述

如果计算出来某个概率为0的话,需要引入拉普拉斯平滑系数,从而去防止计算出来的分类概率为0。

在这里插入图片描述

3.4.3 API

sklearn.naive_bayes.MultinomialNB(alpha = 1.0)

  • aplha:拉普拉斯平滑系数,默认为 1.0 。

3.5 决策树

3.5.1 认识决策树

决策树思想的来源非常朴素,程序设计中的条件分支结构就是if-else结构,最早的决策树就是利用这类结构分割数据的一种分类学习方法。

那我们应该把那个作为条件放在第一个分支呢?也就是说我们如何去判断特征的先后顺序,接着往下看。

3.5.2 决策树分类原理

  1. 信息量用信息熵来衡量(单位为bit)

    在这里插入图片描述

  2. 决策树的划分依据之一——信息增益

    • 定义与公式

      特征A对训练数据集D的信息增益g(D,A)定义为集合D的信息熵H(D)与特征A给定条件下D的信息条件熵H(D|A)之差,即公式为:

      在这里插入图片描述

  3. 公式详解:

  • 信息熵的计算:

    在这里插入图片描述

  • 条件熵的计算:

    在这里插入图片描述

注:Ck表示属于某个类别的样本数。

信息增益表示得知特征X的信息而使得类Y的信息熵减少的程度。

  1. 决策树的其他划分依据
    • ID3 信息增益 最大的准则
    • C4.5 信息增益比 最大的准则
    • CART
      • 分类树:基尼系数 最小的准则 在sklearn中可以选择划分的默认原则
      • 优势:划分更加细致

3.5.3 决策树API

# 决策树分类器
sklearn.tree.DecisionTreeClassifier(criterion = 'gini',max_depth = None,random_state = None)
	# criterion : 默认是'gini'系数,也可以选择信息增益的熵'entropy'
    # max_depth : 树的深度大小,不能太深,否则就是出现过拟合现象,在训练数据上很厉害,在测试集上效果不佳,换句话说,太专用了,没有那么兼容
    # random_state : 随地数种子 

3.5.4 决策树可视化

sklearn.tree import export_graphviz(estimator, out_file="iris.dot", feature_names=iris.feature_names)

3.5.5 鸢尾花案列

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import export_graphviz


def decision_tree():
    """
    决策树对鸢尾花进行分类
    :return:
    """
    # 1.获取数据
    iris = load_iris()
    # 2.划分数据集
    x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=10)
    # 4.模型训练
    estimator = DecisionTreeClassifier(criterion="entropy")
    estimator.fit(x_train, y_train)
    # 5.模型评估
    # 5.1 直接比对真实值和预测值
    y_predict = estimator.predict(x_test)
    print("预测值是:", y_predict)
    print("直接比对真实值和预测值:", y_test == y_predict)
    # 5.2 计算准确率
    print("测试集的准确率是:", estimator.score(x_test, y_test))
    # 6.决策树可视化
    export_graphviz(estimator, out_file="iris.dot", feature_names=iris.feature_names)
    return None


if __name__ == '__main__':
    decision_tree()

iris.dot里面文件不是很好懂,我们借助于http://www.webgraphviz.com/网址,然后把iris.dot文件内容复制到对话框中去,点击生成图表即可。

在这里插入图片描述

3.5.6 决策树总结

  • 优点:简单的理解和解释,树木可视化。
  • 缺点:决策树树的深度控制不好,就会过拟合现象。
  • 改进:
    • 剪枝cart算法(决策树API当中已经实现)
    • 随机森林

3.6 集成学习方法之随机森林

3.6.1 什么是集成学习方法

集成学习通过几个模型组合来解决单一预测问题。它的工作原理是生成多个分类器/模型,各自独立地去学习和做出预测。这些预测最后结合成组合预测,因此优于任何一个单分类的做出预测。

3.6.2 什么是随机森林

在机器学习中,随机森林是一个包含多个决策树的分类器,并且其输出的类别是由个别数输出的类别的众数而定。

3.6.3 随机森林原理过程

根据下列算法而建造每棵树:

  • 用N表示训练用例(样本)的个数,M表示特征数目。
    • 一次随机选出一个样本,重复N次。(有可能出现重复的样本)
    • 随机的去选出m个特征,m << M,建立决策树。(有特征降维的效果)
  • 采用bootstrap抽样

为什么采用BootStrap抽样?

  • 为什么要随机抽样训练集?
    • 如果不进行随机抽样,每棵树的训练集都一样,那么最终训练出的树分类结果也是完全一样的。
  • 为什么要有放回的抽样?
    • 如果不是有放回的抽样,那么每棵树的训练样本都是不同的,每颗树训练出来都是由很大的差异的;而随地森林最后分类取决于多颗树的投票结果。

3.6.4 API

# 随机森林分类器
class sklearn.ensemble import RandomForestClassifier(n_estimators = 100,criterion = 'gini',max_depth = None,min_samples_split = 2,bootstrap = true,random_state = None)
	# 列举是常用的参数,其他的可以看源码
    # n_estimators : int, default=100 The number of trees in the forest.
    # criterion : {"gini", "entropy", "log_loss"}, default="gini" 分割特征的测量方法
    # max_depth : int, default=None 
    # min_samples_split : int or float, default=2
    # bootstrap : bool, default=True 在构建树时需要方法抽样
    # random_state : int, RandomState instance or None, default=None

3.6.5 总结

  • 在当前所有算法中,具有极好的准确率
  • 能够有效地运行在大数据集上,处理具有高维特征的输入样本,而且不需要降维
  • 能够评估各个特征在分类问题上的重要性
  • 69
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CPanMirai

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值