快速幂(含矩阵)

快速幂

题目

在这里插入图片描述
在这里插入图片描述

思路

由数据规模,如果暴力惩罚的花,那就是2的31(a的b次方),肯定不行
假如是求a的1101(二进制)次方,(以下数都表示二进制)那么可以拆解为a的1次方乘以a的00次方乘以a的100次方乘以a的1000次方

代码

这种算法将复杂度降低约为logb

int main()
{
	long long a,b,k,ans=1;
	//数据那么大,记得开longlong
	cin>>a>>b>>k;
	if(b==0)
	{
		cout<<1%k;
		return 0;
	}
	while(b!=0)
	{
		if(b&1!=0)
		ans=ans*a%k;
		a=a*a%k;
		b=b>>1;
	}
	cout<<ans;
}

矩阵快速幂

适用于通项比较难求的情况
(适用于方阵)

斐波那契数列

将斐波那契数列表示为矩阵乘法
下边的i、i-1、2、1都表示斐波那契的第n项
在这里插入图片描述
快速求出斐波那契的第n项
这就表示成了幂的形式,再按照上边的思路就可以了
在这里插入图片描述

struct Matrix
{
	int m[maxn][maxn];
};
Matrix multi(Matrix a,matrix b,int n)
{
	Matrix tmp;
	for(int i=0;i<n;i++)
	{
		for(int j=0;j<n;j++)
		{
			for(int k=0;k<n;k++)
			{
				tmp.m[i][j]+=A.m[i][k]*B.m[k][j]
			}
		}
	}
	return tmp;
}
void quikpower(int N,int n)
{
	for(int i=1;i<=n;i++)
	{
		for(int j=0;j<n;j++)
		{
			if(i==j)ans.m[i][j]=1;
			else ans.m[i][j]=0;
		}
	}
	while(N)
	{
		if(N&1)
		{
			ans=Mul(ans,a);
		}
		a=Mul(a,a);
		N=>>1;
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值