随着人工智能落地化进程的加速,无人驾驶、智慧安防、智慧医疗等领域成为了热门的应用场景,我们已经可以预见在不久的将来必定是人工智能的时代。
数据标注作为人工智能行业的基础,正在为人工智能时代的到来奠基。因此,为机器学习算法训练提供高质量的数据标注服务成为了决定人工智能应用高度的重要因素之一。
相关资料统计显示,2025年产生的数据量将高达163ZB,其中90%是非结构化数据。这些非结构化数据只有经过清洗与标注才具有价值,这就产生了源源不断的清洗与标注需求。数据标注行业因此得以迅速繁荣扩张,数据标注也开始逐步朝着标准化和规范化发展。
然而在发展的背后,问题同样存在,由于缺乏明确的规范和人才体系,数据标注行业的发展在一定程度上受到了制约。由于数据标注行业存在门槛较低、服务质量参差不齐等问题,在标注不同类型的数据时,存在团队管理、数据质量、服务效率、标注成本、数据安全等痛点,这些痛点已成为阻碍行业发展的核心问题。
1. 团队管理
进行数据标注需要大量的标注人员,标注人员可以为不同类型的机器学习模型生成大量的培训数据。但在“众包”以及“转包”模式下,管理能力较弱的公司很难在兼顾多个项目时做到精力集中、高质量地服务客户,这样的后果就是项目延期、数据质量差。
因此,数据服务企业建立完善的内部管理流程,优化项目流程体验,达到效率与质量的双提升非常重要。
2. 数据质量
监督学习下的深度学习算法训练十分依赖于标注数据,如果数据质量无法达到标准,则机器学习模型将无法通过正确的输入进行训练,从而导致AI模型所做的预测不正确。
然而,目前数据标注行业存在很严重的数据质量问题。相关数据显示,当下数据标注行业单次交付达标率低于50%,三次内交付达标率低于90%,远远不能满足AI企业的需求。
因此,数据服务公司提高首次交付项目的准确率,尽可能减少返工情况就非常重要。
3. 服务效率
对于数据服务公司来说,将受过良好训练的工人和正确的工具结合起来生成高质量的培训数据集非常重要。目前数据标注行业主流的项目运营方式是以“众包”以及“转包”为主,数据服务企业很难对标注团队做到直接有效的管理,因此项目延期成为了一种常态。
因此,数据服务公司拥有高效的项目执行系统/AI辅助标注工具,尽可能地提高工作效率,可以按时甚至提前完成项目就十分重要。
4. 标注成本
数据标注业务从本质上来讲也属于一种服务业务,从项目对接到最终项目的完结,每一个环节都需要需求方与数据服务企业不断地商讨,从而做出最优解。大多数企业更喜欢按小时计费,双方积极配合更快地完成标注的同时也能够降低标注成本。
因此,数据服务公司在项目进行中做到积极配合、快速响应,并可以对项目提出一定的优化建议就非常重要。
5. 数据安全
当涉及到非结构化数据的标签时,这包括诸如人脸、车牌之类的个人数据,文字和图像中出现的其他任何识别数据等,这些数据的存储、传输等对于安全性的要求极高。
因此,数据服务公司有明确具体的安全管理流程,对数据传输、存储,以及结项后的数据销毁等环节有足够的重视就非常重要。
以上五点即是数据标注行业的主要核心需求,所以,主动做出改变,满足需求方的核心诉求,数据服务企业才能在激烈的市场竞争中建立差异化的优势。