在人工智能高速发展的浪潮下,AI已成为企业新的探索目标,智能产品也逐渐遍布各大行业,越来越多的产品被赋予了AI的标签。在未来,人工智能将会在支柱产业中占据一席之位,也必将会带动数据标注产业的蓬勃发展!
近年来,人工智能技术应用广泛,如果想要实现类似人类的判断识别能力,就需要通过人工智能算法+数万的标注数据,经过不断的机器学习训练才能够实现。所以,随着AI技术应用的大量需求,数据标注的需求量也在成倍的增长。然而,数据标注的发展背后也面临着诸多困难。
1、专业领域数据标注能力要求有待提升
在不同的应用场景下,标注的数据需求也不同。比如银行和金融业需要文件的验证、实时的客户交互;农业部门需要对农作物的检测、土壤评估等,都需要高度专业化和细致的标注过程,这对数据服务商的标注能力专业性要求更高。
2、专业领域数据标注人力成本过高
以自动驾驶为例,